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Abstract 

Fire has been a prevalent disturbance on Earth for millions of years. Around the globe 

there are several regions that have become fire adapted, including the Southeastern United 

States. There have been few studies examining the effects of wildland fires on soil 

macroinvertebrates in the Blue Ridge Mountains, in spite of the importance of these animals to 

soil processes and their contributions to the biodiversity of these ecosystems. During the fall of 

2016, the Southeastern USA experienced numerous, large wildfires. These fires offered an 

opportunity to study the effects of wildland fire on soil macroinvertebrates. We sampled sites 

from three different wildfires in North Georgia and Tennessee, each site with five burned plots 

and five unburned plots. These sites were sampled seasonally from fall 2017 through fall 2019. 

At each plot, on each date, we collected macroinvertebrates by hand sorting both litter (4 m 

diameter plots) and mineral soil monoliths (30 x 30 x 30 cm) for 30 person-minutes each. All 

macroinvertebrates were identified to a coarse taxonomic level. One focal taxon, millipedes, 

were identified to species. We ran three-factor ANOVAs using burn status (burned vs. 

unburned), site, sampling date, and all the interaction terms as factors and soil fauna richness, 

soil fauna abundance, litter fauna richness, and litter fauna abundance as dependent variables. 

We analyzed millipede and macroinvertebrate datasets separately. Because sampling date was a 

significant main effect, we wanted to determine if it was truly the sampling date or just seasonal 

differences the fauna experiences. The factors for this set of ANOVAs were site, burn status, and 

season. Of the sixteen ANOVAs conducted, there was only one where there was a significant 

difference between the burned and unburned plots as a main effect. Specifically, the mean 

abundance of leaf litter-dwelling macroinvertebrates was higher in unburned plots than burned 

plots. However, in almost every ANOVA, time and site had a significant effect on abundance 
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and richness. Pre-fire drought conditions may have masked the effects of the fire by driving the 

fauna deeper into the soil, thus protecting them from the effects of the fire. Given that the 

taxonomic resolution for these data was coarse, there could have been responses to the fire by 

individual taxa. Because soil fauna was not affected by the fire, forest managers may not need to 

account for adverse effects of fire on soil fauna when planning for prescribed fire.  
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Soil Macroinvertebrate Responses to Wildfires in the Blue Ridge Mountains, USA 

Introduction 

 Fire has been around for about 420 million years and is categorized as one of the most 

widespread disturbances globally that influences biological evolution and biogeochemical cycles 

(Abrantes 2019, Pyne 2019). Fire-adapted ecosystems - such as longleaf pine forests, grassland 

savannas, tallgrass prairies, and chaparrals - rely on regular fire regimes, the pattern of fire 

required for these ecosystems, to function normally (Brown 2000). The aspects of fire that have 

the biggest effects on ecosystems are intensity and severity (He et al. 2019). Intensity is 

measured by the heat released per unit of time (Pyne et al. 1996a) and severity focuses on the 

damage fire causes to the vegetation and the soil (Keeley 2009) including development of 

hydrophobic conditions, increased risk of erosion, and changes in soil aggregate structure 

(Callaham et al. 2012). Severity is typically categorized as low, moderate, or high depending on 

the damage to the ecosystem. The two factors are not correlated; a fire can be classified as low 

intensity but high severity.  

 Fires can have direct and indirect effects on ecosystems.  Direct effects largely 

encompass direct mortality and injury to organisms, usually a result of their exposure to heat 

because most animals are unable to tolerate temperatures over 50°C (Abrantes 2019). Organisms 

with limited mobility are the most affected by this due to their inability to escape the heat. These 

direct effects typically affect the leaf litter-dwelling fauna in the O-horizon (Kauf et al. 2018). 

Because soil is an excellent insulator, soil-dwelling taxa such as earthworms that are able to 

burrow deeper into the ground are able to escape the direct impact of the fire (Iverson et al. 

2002). 
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 Indirect effects can include biological, chemical, or physical changes in soil 

characteristics that influence soil fauna and plant response (Callaham et al. 2012). For soil fauna 

specifically, one of the main indirect effects of fire is the change in habitat and food resources 

(Abrantes 2019) because fires remove a large portion of the upper organic horizon of the soil 

which is essential to many macroinvertebrate species (Coyle et al. 2017, Buckingham et al. 2019, 

Gongalsky et al. 2013). About 90% of terrestrial arthropods spend at least a portion of their life 

cycle in the surface litter layer or in the soil (Klein et al. 1988) but the overall effects of fire on 

macroinvertebrates varies wildly. For example, some studies show that fire can reduce 

abundance and richness (Buckingham et al. 2015, Buckingham et al. 2019, Gongalsky and 

Persson 2013, Vasconcelos et al. 2009, Lisa et al. 2015) and diversity and evenness (Gorbunova 

et al. 2017, Hanula and Wade 2003) of soil fauna in various ecosystems. However, other studies 

have shown that fire may increase abundance and diversity for some taxa (Elia et al. 2011, 

Moretti et al. 2006) or have little to no effect on the fauna (Andersen and Muller 2000, Trucchi et 

al. 2009). 

 There has been little research on soil fauna responses to wildfires in deciduous forests of 

the eastern United States though there have been some studies done after prescribed fires (e.g., 

Kalisz and Powell 2000, Coleman and Rieske 2006). Coleman and Rieske (2006) found that 

prescribed burns did not affect ground-dwelling arthropod richness and abundance, or ground-

dwelling and leaf-litter arthropod diversity. Kalisz and Powell (2000) found that fire significantly 

reduced juvenile and adult stages of Coleoptera.  

Fire History in the Southeast US 

 The mixed-oak forests of the southern Appalachians have experienced various different 

fire regimes over the past 4,000 years. Historically the fire regime consisted of frequent low-
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intensity fire (Van Lear 1989), which allowed oaks, pines, and chestnut to become dominant in 

these forest stands (Brose et al. 2001). It was not until the mid-1800s and the boom of the 

Industrial Revolution and the logging industry that the fire regime changed to frequent high-

intensity fires. This caused changes to the forest structure: mainly conifers were unable to grow 

in these conditions. There were several massive wildfires that occurred in the early 1900s which 

caused a nationwide attitude towards fire suppression (Brose et al. 2001).  

 This attitude of fire suppression has had serious consequences for fire-adapted 

ecosystems. For example, forests have become denser which has led to shade-tolerant shrubs 

filling the understories. Such changes alter fire behavior due to increased diversity and 

abundance of fuel sources in the form of accumulation of leaf litter and organic matter (Ryan 

2013). As a consequence, fires have increased in intensity (Brose et al. 2001). This accumulation 

of organic matter also damages the plant community structure; fine roots that are extremely 

vulnerable to fire will colonize and grow in the deep organic layer and are not able to penetrate 

deeper into the mineral soil. When these fine roots are damaged by fire this leads to delayed tree 

mortality, whereas under a normal fire regime these trees would be able to survive the effects of 

the fire (Carpenter et al. 2020). 

The 2016 Wildland Fires 

During the fall of 2016, numerous large wildfires burned across the Appalachian 

landscapes, mainly affecting northern Georgia, eastern Tennessee, and western North Carolina. 

In Tennessee, 2,121 residences and 53 commercial structures were burned (NICC 2016). One of 

the major fires in Tennessee was the Chimney Tops 2 fire which burned 17,140 acres in the 

Great Smoky Mountains National Park and into Gatlinburg, Tennessee (James et al. 2020). The 

weather conditions that preceded contributed to the severity of these fires. The southern 
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Appalachian Mountains were in an extreme to exceptional drought October through December 

(United States Drought Monitor 2021) and the total precipitation for September and October 

2016 at the Coweeta Hydrologic Laboratory, in western North Carolina, was 2.4 cm, the driest 

fall recorded for the laboratory’s 84-year history (Miniat et al. 2018).   

Goals 

Our goal was to determine whether these three wildfires affected soil fauna communities.  

Specifically, we examined whether abundance and richness of leaf litter-dwelling and soil-

dwelling macroinvertebrates differed between burned and unburned plots at three locations 

affected by the 2016 wildfires in north Georgia and Tennessee.  

Methods 

Study Sites 

 We studied three sites affected by wildfires in Georgia and Tennessee (Table 1, Figure 1). 

The Chimney Tops 2 fire occurred near Gatlinburg, Tennessee. The dominant soil type in this 

area is Spivey-Santeetlah-Nowhere complex (Web Soil Survey 2021). The Spivey Series is 

classified as loamy-skeletal, isotic, mesic Humic Dystrudepts (USDA 2009). The second site was 

located near Dillard, Georgia at the Rock Mountain fire. The dominant soil type at this site is 

Ashe-Porters association and Porters association (Web Soil Survey 2021). These soils are coarse-

loamy, mixed, active, and mesic Typic Dystrudepts (National Cooperative Soil Survey 2001). 

The Rough Ridge fire occurred in northwestern Georgia, located east of Crandall, Georgia. The 

dominant soil types at this field location are Cheoah-Edneytown complex and Edneytown loam 

(Web Soil Survey 2021). These soils are fine-loamy, mixed, active, and mesic Typic Hapludults 

(National Cooperative Soil Survey 2002).  
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Experimental Design and Collection Methods 

 At each site, we collected samples from ten plots, five in areas that were burned and five 

in areas that were unburned. We marked plot centers with a nail and spaced them thirty meters 

apart. We sampled once at each site during each of six time periods: Fall 2017, Spring 2018, 

Summer 2018, Fall 2018, Spring 2019, and Fall 2019. We were unable to sample soil during the 

spring and fall of 2019 in the Great Smoky Mountains National Park due to permit restrictions. 

We sampled leaf litter-dwelling macroinvertebrates using hand collection over thirty 

person-minutes to ensure equal effort at each plot (Snyder et al. 2006) within a 2m radius of each 

plot center. Soil-dwelling invertebrates were hand-sorted for thirty-person minutes (Schmidt 

2001) from a 30x30x30cm (2700 cm3) soil monolith dug from a haphazardly chosen location just 

outside the hand collection plot. All specimens collected were preserved in 70% ethanol for 

long-term storage.  

The invertebrates were hand-sorted and identified with a LEICA M80 dissecting 

microscope outfitted with a LINITRON DC12V 400mA ring light. All invertebrates were 

identified to a coarse taxonomic level (Table 2). Millipedes were selected as a focal taxon for 

this project since they are one of the most diverse groups of terrestrial invertebrates (Sierwald 

and Bond 2007). Additionally, the Appalachian Mountains is a biodiversity hotspot for 

millipedes (Means 2019).  All millipedes were identified to the lowest taxonomic level possible 

using dichotomous keys (Hoffman 1990, Shear 1966, Shear 1999). See Appendix A for a full list 

of primary literature used for millipede identification.  

Statistics 

We ran three-factor ANOVAs using burn status (burned vs. unburned), site (Chimney 

Tops 2 fire, Rock Mountain fire, Rough Ridge fire), sampling date (Fall 2017, Spring 2018, 
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Summer 2018, Fall 2018, Spring 2019, Fall 2019), and all the interaction terms as factors. Soil 

fauna richness, soil fauna abundance, litter fauna richness, and litter fauna abundance were the 

dependent variables. We analyzed millipede and macroinvertebrate datasets separately. We 

defined abundance as the number of individuals. Richness was defined as the number of coarse 

taxonomic groups for macroinvertebrates; for millipedes, richness was the number of species. 

Post-hoc Tukey’s HSD tests were conducted when appropriate.  All analyses were performed in 

JMP (SAS, Version 16.0.0). 

Because there were significant differences in abundance and richness metrics for 

sampling date across leaf litter-dwelling and soil-dwelling macroinvertebrates as well as 

millipedes collected from the litter and soil, we opted to run an additional set of three-factor 

ANOVAs. The factors for this set of ANOVAs were burn status (burned vs. unburned), site 

(Chimney Tops 2 fire, Rock Mountain fire, Rough Ridge fire), and season (all years combined 

into Fall, Spring, Summer). We chose season as a factor to assess if the significant differences 

were due to the changes since the time the fire had occurred or were just due to seasonal 

differences the fauna experiences.   

Results 

Macroinvertebrate Data 

 A total of 5,518 invertebrate specimens were collected representing eight invertebrate 

classes. Of that total, 3,281 leaf litter-dwelling invertebrates and 2,237 soil-dwelling 

invertebrates were collected. When broken down by site, a total of 1,689 invertebrates were 

collected at our site from the Chimney Tops 2 fire, 2,193 at the Rock Mountain fire site, and 

1,636 at the Rough Ridge fire site.  
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Leaf Litter-dwelling Invertebrates 

 The three-factor ANOVA conducted to examine the effect of site, burn status, and 

sampling date found significant differences in the abundance of leaf litter-dwelling 

macroinvertebrates (F=6.43, P<0.0001, Table 3, Figure 2). There was no significant three-way 

interaction (F=0.97, P=0.4737, Table 3). There was a significant two-way interaction between 

site and sampling date (F=4.08, P<0.0001, Table 3). There was a main effect that had a 

significant p-value, sampling date, (F=25.74, P<0.0001, Table 3, Figure 3). There was no 

significant difference in abundance of leaf litter-dwelling macroinvertebrates between the burned 

and unburned plots (F=0.19, P=0.6647, Table 3). 

 The three-factor ANOVA conducted to examine the effect of site, burn status, and 

collection season found significant differences in the abundance of leaf litter-dwelling 

macroinvertebrates (F=3.15, P<0.0001, Table 4). There was no significant three-way interaction 

(F=0.53, P=0.7169, Table 4). There were no significant two-way interactions. Each main effect 

had a significant p-value: site (F=7.12, P=0.001, Table 4, Figure 4), burn status (F=5.43, 

P=0.021, Table 4, Figure 5), and season (F=9.57, P=0.0001, Table 4, Figure 6).  

The three-factor ANOVA conducted to examine the effect of site, burn status, and 

sampling date found significant differences in the richness of leaf litter-dwelling 

macroinvertebrates (F=6.95, P<0.0001, Table 3, Figure 2). There was no significant three-way 

interaction (F=1.05, P=0.4025, Table 3). There was a significant two-way interaction of site and 

sampling date (F=7.14, P<0.0001, Table 3). There were two main effects that had significant p-

values: site (F=21.34, P<0.0001, Table 3, Figure 7) and sampling date (F=23.80, P<0.0001, 

Table 3, Figure 3). There was no significant difference in richness of leaf litter-dwelling 

macroinvertebrates between burned and unburned plots (F=0.24, P=0.6286, Table 3). 
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The three-factor ANOVA conducted to examine the effect of site, burn status, and 

collection season found significant differences in the richness of leaf litter-dwelling 

macroinvertebrates (F=2.92, P= 0.0002, Table 4). There was no significant three-way interaction 

(F=0.43, P=0.7872, Table 4). There were no significant two-way interactions. There were two 

main effects that had significant p-values: site (F=8.88, P=0.0002, Table 4, Figure 4) and season 

(F=10.66, P<0.0001, Table 4, Figure 6). There was no significant difference in richness between 

burned and unburned plots (F=0.09, P=0.7663, Table 4). 

Soil-dwelling Invertebrates 

The three-factor ANOVA conducted to examine the effect of site, burn status, and 

sampling date found significant differences in the abundance of soil-dwelling macroinvertebrates 

(F=3.55, P<0.0001, Table 3, Figure 8). There was no significant three-way interaction (F=1.65, 

P=0.1183, Table 3). There was a significant two-way interaction of site and sampling date 

(F=4.66, P<0.0001, Table 3). The main effect of sampling date had a significant p-value 

(F=17.82, P<0.0001, Table 3, Figure 9). There was no significant difference in abundance 

between the burned and unburned plots (F=0.003, P=0.9583, Table 3). 

The three-factor ANOVA conducted to examine the effect of site, burn status, and 

collection season did not find significant differences in the abundance of soil-dwelling 

macroinvertebrates (F=0.69, P=0.8, Table 4).  

The three-factor ANOVA conducted to examine the effect of site, burn status, and 

sampling date fire found significant differences in the richness of soil-dwelling 

macroinvertebrates (F=4.88, P<0.0001, Table 3, Figure 8). There was no significant three-way 

interaction (F=0.43, P=0.7872, Table 3). There was a significant two-way interaction of site and 

sampling date (F=5.38, P<0.0001, Table 3). Two of the main effects had significant p-values: 
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site (F=8.88, P=0.0002, Table 3, Figure 10) and sampling date (F=19.56, P<0.0001, Table 3, 

Figure 9). There was no significant difference in richness between the burned and unburned plots 

(F=0.10, P=0.7503, Table 3). 

The three-factor ANOVA conducted to examine the effect of site, burn status, and 

collection season did not find significant differences in the richness of soil-dwelling 

macroinvertebrates (F=1.36, P=0.1628, Table 4).  

Millipede Data 

 A total of 1,511 millipedes were collected, representing 7 orders and 12 families. From 

the two different collection methods, 246 millipedes were collected from the soil and 1,265 

millipedes were collected from the litter.  

When compiling species lists (Appendix B) there were some noticeable trends and 

differences at each site. At the Chimney Tops 2 fire, there were several species only collected 

from burned plots. These species were Uroblaniulus sp., Pseudopolydesmus canadensis, and 

Scytonotus sp. There was one family that was only found at this site, Zosteractinidae. In the 

family Zosteractinidae, we found two specimens in the genus Ameractis. One specimen we were 

able to identify to species, Ameractis chirogona. Pseudopolydesmus canadensis was also only 

found at this site; both specimens were found in burned plots in fall 2018. There were also two 

species for which we only found one representative, each, from this site (Narceus americanus-

annularis complex and Cambala sp.). There were several species only found at Rock Mountain 

as well. We found one millipede in the genus Trichopetalidae and we found several millipedes 

from the species Erdelyia saucra.  

 At the Rough Ridge site, there were four species found only at this site: Cleidogona 

major, C. inexpectata, Apheloria montana., and a singular specimen of Brachoria initialis. All of 
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the sites had representatives from the genus Cambala, however Rough Ridge was the only site to 

have adult males that we were able to identify to species, Cambala annulata. The Rough Ridge 

site had the most N. americana-annularis complex specimens, over 60 collected over the course 

of the study.   

Litter-Dwelling Millipedes  

The three-factor ANOVA conducted to examine the effect of site, burn status, and 

sampling date found significant differences in the abundance of millipedes collected from the 

leaf litter (F=10.56, P <0.0001, Table 5, Figure 11). There was a significant three-way 

interaction (F=1.95, P=0.0437, Table 5). There was a significant two-way interaction of site and 

sampling date (F=7.49, P<0.0001, Table 5). One of the main effects, sampling date, had a 

significant p-value (F=36.07, P<0.0001, Table 5, Figure 12). There was no significant difference 

in abundance of millipedes collected from the leaf litter between burned and unburned plots 

(F=0/65, P=0.4198, Table 5). 

The three-factor ANOVA conducted to examine the effect of site, burn status, and season 

found significant differences in the abundance of millipedes collected from the leaf litter 

(F=5.71, P<0.0001, Table 6). There was no significant three-way interaction (F=1.84, P=0.1237, 

Table 6). There was a significant two-way interaction between site and season (F=3.51, 

P=0.0089, Table 6). There was a significant two-way interaction between site and burn status 

(F=4.06, P=0.0191, Table 6). Two of the main effects had significant p-values: site (F=20.36, 

P<0.0001, Table 6, Figure 13) and season (F=14.27, P<0.0001, Table 6, Figure 14). There was 

no significant difference in abundance of millipedes collected from the leaf litter between burned 

and unburned plots (F=0.44, P=0.5101, Table 6). 
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The three-factor ANOVA conducted to examine the effect of site, burn status, and 

sampling date found significant differences in the richness of millipedes collected from the leaf 

litter (F=4.67, P<0.0001, Table 5, Figure 11). There was no significant three-way interaction 

(F=1.46, P=0.1596, Table 5). Each two-way interaction was significant: site and burn status 

(F=7.31, P=0.0009, Table 5); site and sampling date (F=3.29, P=0.0007, Table 5); and burn 

status and sampling date (F=2.32, P=0.0463, Table 5). One of the main effects, sampling date, 

had a significant p-value (F=12.97, P<0.0001, Table 5, Figure 12); There was no significant 

difference between richness of millipedes collected from the leaf litter between burned and 

unburned plots (F=3.42, P=0.0666, Table 5). 

The three-factor ANOVA conducted to examine the effect of site, burn status, and season 

found significant differences in the richness of millipedes collected from the leaf litter (F=4.31, 

P<0.0001, Table 6). There was no significant three-way interaction (F=0.69, P=0.5977, Table 6). 

There was a significant two-way interaction between site and season (F=3.76, P=0.0059, Table 

6). Two of the main effects had significant p-values: site (F=9.45, P=0.0001, Table 6, Figure 13) 

and season (F=9.93, P<0.0001, Table 6, Figure 14). There was no significant difference in 

richness of millipedes collected from the leaf litter between burned and unburned plots (F=1.51, 

P=0.2204, Table 6). 

Soil-Dwelling Millipedes 

The three-factor ANOVA conducted to examine the effect of site, burn status, and 

sampling date did not find significant differences in the abundance of millipedes collected from 

the soil (F=1.46, P=0.0758, Table 5, Figure 15). The three-factor ANOVA conducted to examine 

the effect of site, burn status, and season did not find significant differences in the abundance of 

millipedes collected from the soil (F=1.04, P=0.4178, Table 6). The three-factor ANOVA 
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conducted to examine the effect of site, burn status, and sampling date found significant 

differences in the richness of millipedes collected from the soil (F=1.87, P =0.0082, Table 5, 

Figure 15). There were no significant three-way or two-way interactions. The main effects did 

not have significant p-values. The three-factor ANOVA conducted to examine the effect of site, 

burn status, and season did find significant differences in the richness of millipedes collected 

from the soil (F=1.8648, P=0.0257, Table 6). There were no significant three-way or two-way 

interactions. The main effect, site, had a significant p-value (F=5.3, P=0.006, Table 6). There 

was no significant difference in richness of millipedes collected from the soil between the burned 

and unburned plots (F=2.24, P=0.1371, Table 6). 

Discussion 

 Across the sixteen ANOVAs in our analysis, there was only one instance of a significant 

difference between burned and unburned plots. Specifically, the abundance of leaf litter-dwelling 

macroinvertebrates was higher in the unburned plots than the burned plots. This one instance 

follows the findings of previous studies, but overall our results contradict previous findings 

where fire reduced abundance and richness of the fauna (Buckingham et al. 2015, Buckingham et 

al. 2019, Gongalsky and Persson 2013, Vasconcelos et al. 2009, Lisa et al. 2015). 

 Although most of the areas where we sampled were classified as low severity burns, the 

organic layer was completely combusted. For example, our burned plots from the Rock 

Mountain fire had exposed mineral soil and there was no leaf litter layer present (Mac Callaham 

Jr., pers. comm.). The pre-fire drought likely contributed to the incineration of the leaf litter 

layer. Under normal conditions, rain and moisture will compact the leaf litter layer; the drought 

at the time of leaf fall led to air spaces between these fine fuels, which often leads to intense fires 
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and more complete combustion (Pyne et al. 1996b). We anticipated that since the fire caused 

such complete removal of the leaf litter layer, this would cascade to an effect on the fauna. 

Pre-fire conditions likely played an important role in contributing to the lack of 

difference in abundance and richness of leaf litter-dwelling and soil-dwelling invertebrates 

between burned and unburned plots. The severe drought pre-fire, which also consequently led to 

the fire conditions, potentially could have driven soil-dwelling fauna, such as earthworms, 

deeper into the soil profile to seek out optimal moisture conditions (Florian et al. 2019, Fraser et 

al. 2012). This would have also protected the fauna against the heat effects of the fire that could 

have caused direct mortality. This severe drought would have affected the leaf litter-dwelling 

fauna as well: species that primarily reside in the leaf litter are often capable of burrowing into 

the soil when conditions are not ideal (Blair et al. 1997). Although there have been no studies to 

date examining the combined effects of wildfire and drought on terrestrial invertebrates, Verkaik 

et al. (2013) conducted research on how seasonal droughts and wildfire shape macroinvertebrate 

communities in streams: there were no significant differences in abundance of the taxa between 

their control/unburned catchments and the burned catchments. They also found that drought was 

an overriding disturbance factor when determining the response of fauna to large-scale 

disturbances like wildfires because the fauna responded more to the previous spring’s 

precipitation than the fire.   

 It is also possible that that fire did have an effect on our fauna, but we were unable to 

detect a difference in richness or abundance. First, weather factors on the day of collection such 

as heat, humidity, and precipitation could have an effect on the fauna’s activity level (Johnson 

2007). Precipitation in the days leading up to the collection date would have had an effect on soil 

moisture levels. Martay and Pearce-Higgins (2018) found that there was a positive correlation 
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between earthworm abundance and soil moisture. Second, another drought during the sampling 

period could have confounded the results. In the Fall of 2019, North Georgia and Tennessee did 

experience a drought, although not as severe as the drought in 2016 (United States Drought 

Monitor 2021). This could have contributed to the lower abundance and richness when compared 

to the other collection dates. Last, because the Blue Ridge Mountains contain fire adapted 

ecosystems, there could have been a rapid response of the soil fauna that we missed since we 

started sampling a year after the fire occurred (Brose et al. 2001). For future research on 

wildfires, we recommend that collection start relatively quickly after the fire has passed over an 

area since the fauna may respond within the first few months after the fire.  

 Additionally, we did not look at how fire affected individual taxa. Fire may have had an 

effect on the macroinvertebrate fauna at a finer scale as has been shown for Coleoptera, 

Lepidoptera, Hymenoptera, and Aranea (Kalisz and Powell 2000, Elia et al. 2011, Moretti et al. 

2006). For many taxonomic groups collected in our study, life history and phenology are not 

known. This may include information such as breeding season, dormant season, and what time of 

day the fauna is most active. It is important to keep this in mind when sampling for soil 

macroinvertebrates to ensure that you are sampling at different times throughout the year to get a 

more accurate measurement of true abundance and richness metrics of the fauna. This adds a 

challenge to interpreting the results of wildfire studies. There is still much information regarding 

soil fauna that needs to be uncovered.   

 An important caveat to our study is that we do not have pre-fire data, so it is possible that 

we did not detect difference in abundance and richness between the burned and unburned plots 

because the range of values for abundance and richness are typical for these sites. Wildland fires 

are challenging to study, in part because you cannot predict when they will occur. Because of 
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this unpredictability, it is much more logistically feasible obtain pre-fire data for a prescribed fire 

than a wildfire.   

 Given the differences in soil, dominant trees, topography, and geologic history, the 

differences in abundance and richness across sites was expected. The differences in abundance 

and richness during the various collection seasons was expected as well (Johnson 2007). We 

anticipated these differences due to differences in weather patterns and behavior of the fauna 

during these seasons which is consistent with other studies (Silveriera et al. 2010, Auclerc et al. 

2019).  

 In the past few decades there has been increased interest in reintroducing fire as a means 

of forest management. Prescribed fire helps the landscape, especially in the Appalachians, as 

hazard-reduction by reducing flammable fuel, controlling understory hardwood growth, 

regenerating pine growth, and regenerating hardwood trees (Van Lear 1989). The southern US is 

taking the lead in utilizing prescribed fire for land management (Ryan et al. 2013). Georgians 

prescribe burn about 1.4 million acres (566,560 hectares) per year (Georgia Forestry 

Commission 2021). Prescribed fire has also been reintroduced in the grasslands of the American 

Midwest for grazing and prairie restoration (Ricketts and Sandercock 2016, Hill et al. 2017). 

Because soil fauna in the Blue Ridge Mountains were not affected by wildland fires in our study, 

forest managers may not need to account for these communities when creating burn plans for 

prescribed fire in this region. Soil macroinvertebrates are already infrequently considered by 

forest managers; however, management of the diverse soil fauna communities is important for 

conservation of biodiversity and because of the ecosystem services soils provide (Wall and 

Nielsen 2021, Decaëns et al. 2006). Additionally, there is a growing interest in using prescribed 
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fire the combat invasive earthworm species (Ikeda et al. 2015, Blackmon et al. 2019) which 

would help to preserve the biodiversity of native soil fauna communities (Snyder et al. 2011).  

 There can be differences in fire effects between prescribed and wildland fire. Depending 

on the goal of the prescribed fire (e.g., fuel reduction, thinning), they are often low intensity and 

low severity. However, wildland fires can have a lot of small spatial scale, within-fire variability 

in intensity and severity. The three fires in our study were likely mostly low severity with areas 

of moderate and high severity throughout. Given the pre-fire drought conditions and the removal 

of abundant fuel sources that we observed, we believe the three fires would have been high 

intensity as well. If the soil fauna is not affected by the variable burn severity and high intensity 

within a wildland fire, we would expect that they would not be affected by low severity and low 

intensity planned burns (Coleman and Rieske 2006, Malmstrom et al. 2008). For future research, 

we would recommend measuring severity of the study area and taking measures of intensity 

during the fire. Fire intensity is rarely measured and is an important component to be measured 

in the field during the fire (O’Brien et al. 2016).  
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Figure 1. Satellite image of the three collection sites. Site “#1” corresponds to the location of the 
Chimney Tops 2 fire in Gatlinburg, TN. Site “#2” corresponds to the location of the Rock 
Mountain fire in Dillard, GA. Site “#3” corresponds to the Rough Ridge fire located near 
Crandall, GA. 
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Table 1. Site description table depicting characteristics of each site  

Name of the 
Fire 

GPS 
Coordinates Forest/Wilderness Area Fire Start 

Date 

Total 
Acreage 
Burned 

Dominant Trees Soil Order Soil Series 

 

Chimney 
Tops 2 fire 

35°39’49.2” N 
83° 31’17.4” W 

Great Smoky 
Mountains National 
Park 

13-Nov-16 17,140 
acres 

Hickory, Tulip 
Poplar, and 
Maple 

Inceptisol Spivey-Santeetlah-
Nowhere complex 

Rock 
Mountain 
fire 

34°57'0" N, 
83°34'12" W 

Chattahoochee National 
Forest- Southern 
Nantahala Wilderness 
area 

9-Nov-16 24,725 
acres 

Loblolly pine, 
Shortleaf pine, 
dry/dry-mesic 
Oak, and 
Hickory 

Ultisol 

Ashe-Porters 
association, moderately 
steep, and Porters 
association, stony, 
steep 

Rough 
Ridge fire 

34°51’59.0” N 
84°38’37.7” W 

Chattahoochee National 
Forest: Cohutta 
Wilderness area 

16-Oct-16 27,870 
acres 

Oak, Tulip 
Poplar, 
Hemlock, Maple 

Ultisol 
Cheoah-Edneytown 
complex and 
Edneytown loam 
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Table 2. List of coarse taxonomic labeling used for identifying macroinvertebrates  

Coarse Taxonomic Categories Class Order Family 
Ant Insecta Hymenoptera Formicidae 

Bee Insecta Hymenoptera 

Beetle Insecta Coleoptera  

Beetle Larva Insecta Coleoptera  

Caterpillar Insecta Lepitoptera  

Centipede Chilopoda   

Cicada nymph Insecta Hemiptera  

Cockroach Insecta Blattodea  

Diplura Entognatha Diplura  

Earthworm Clitellata Opisthopora  

Fly Insecta Diptera  

Fly Larva Insecta Diptera  

Grasshopper Insecta Orthoptera  

Hornet Insecta Hymenoptera 

Insect Insecta   

Millipede Diplopoda   

Moth Insecta Lepidoptera  

Other Flying Insects Insecta   
Rolli Polli Malacostraca Isopoda  

Slug Gastropoda   

Snail Gastropoda   

Spider Arachnida Araneae  

Termite Insecta Isoptera  

Tick Arachnida Ixodida  

Wasp Insecta Hymenoptera 

Yellow Jacket Insecta Hymenoptera 
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Table 3. Three-factor analysis of variance combined table testing the difference between 
abundance and richness of leaf litter-dwelling and soil-dwelling macroinvertebrates. Factors 

were site, burn status, and sampling date. Significant P-values are bolded.  

  Invertebrate Litter Invertebrate Soil 

 Abundance Richness Abundance Richness 

 F Ratio P-Value F Ratio P-Value 

F 

Ratio P-Value F Ratio P-Value 

Whole Model 6.4343 <0.0001 6.9463 <0.0001 3.5466 <0.0001 4.8813 <0.0001 
Site 2.0691 0.13 21.3415 <0.0001 1.0305 0.3598 9.8644 0.0001 
Burn Status 0.1886 0.6647 0.235 0.6286 0.0027 0.9583 0.1017 0.7503 

Site*Burn Status 0.8175 0.4436 0.7197 0.4886 0.0338 0.9668 0.1017 0.9034 

Sampling Date 25.7387 <0.0001 23.8047 <0.0001 17.821 <0.0001 19.5593 <0.0001 
Site*Sampling Date 4.0801 <0.0001 7.1427 <0.0001 4.6644 <0.0001 5.3831 <0.0001 
Burn 

Status*Sampling 
Date 1.4212 0.2201 1.7728 0.1221 0.3652 0.7783 0.1544 0.9267 

Site*Burn Status* 
Sampling Date 0.9682 0.4737 1.0531 0.4025 0.3112 0.9606 1.6451 0.1183 

 
Table 4. Three-factor analysis of variance combined table testing the difference in abundance 

and richness between leaf litter-dwelling and soil-dwelling macroinvertebrates. Factors were site, 
burn status, and season. Significant P-values are bolded.   

  Invertebrate Litter Invertebrate Soil 

 Abundance Richness Abundance Richness 

 

F 
Ratio P-Value F Ratio P-Value 

F 
Ratio 

P-
Value 

F 
Ratio 

P-
Value 

Whole Model 3.1507 <0.0001 2.9173 0.0002 0.6989 0.8 1.3648 0.1628 

Site 7.1787 0.001 8.8763 0.0002 0.4899 0.6137 3.0536 0.0503 

Burn Status 5.431 0.021 0.0887 0.7663 0.97 0.3264 0.0231 0.8794 

Site*Burn Status 1.0712 0.345 0.4186 0.6587 1.0931 0.338 3.3299 0.0386 
Season 9.5714 0.0001 10.6627 <0.0001 1.0225 0.3623 1.7444 0.1785 

Site*Season 2.1083 0.0821 1.3621 0.2494 1.3661 0.2487 1.7609 0.14 

Burn Status*Season 0.5793 0.5615 1.4571 0.2359 0.306 0.7369 0.0619 0.94 
Site*Burn Status* 

Season 0.526 0.7168 0.4295 0.7872 0.2971 0.8794 1.2115 0.3086 
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Table 5. Three-factor analysis of variance combined table testing the difference in abundance 
and richness of millipedes collected from the leaf litter and the soil. Factors were site, burn 

status, and sampling date. Significant P-values are bolded. 

  Millipede Litter Millipede Soil 

 Abundance Richness Abundance Richness 

 F Ratio P-Value F Ratio P-Value 
F 
Ratio 

P-
Value 

F 
Ratio 

P-
Value 

Whole Model 10.5617 <0.0001 4.6697 <0.0001 1.4578 0.0758 1.8721 0.0082 
Site 0.5981 0.5512 0.8753 0.4189 1.2832 0.2807 1.5548 0.2151 

Burn Status 0.6545 0.4198 3.4165 0.0666 0.0247 0.8754 0.1446 0.7043 
Site*Burn Status 2.2575 0.1083 7.3129 0.0009 0.0247 0.9756 0.4701 0.626 

Sampling Date 36.0719 <0.0001 12.9741 <0.0001 1.5973 0.1933 1.2655 0.2891 
Site*Sampling Date 7.49 <0.0001 3.2894 0.0007 1.4257 0.1918 1.6136 0.127 

Burn Status*Sampling 
Date 0.3728 0.8666 2.32 0.0463 2.169 0.0949 1.7959 0.1512 

Site*Burn Status* 
Sampling Date 1.9451 0.0437 1.4616 0.1596 0.5022 0.8528 1.1458 0.3374 

 
 
Table 6. Three-factor analysis of variance combined table testing the difference between 
abundance and richness of millipedes collected from the leaf litter and soil. Factors were site, 

burn status, and season. Significant P-values are bolded. 

  Millipede Litter Millipede Soil 

 Abundance Richness Abundance Richness 

 F Ratio P-Value F Ratio P-Value F Ratio P-Value F Ratio 
P-
Value 

Whole Model 5.7147 <0.0001 4.3091 <0.0001 1.0415 0.4178 1.8648 0.0257 
Site 20.3651 <0.0001 9.4908 0.0001 2.434 0.0913 5.3016 0.006 
Burn Status 0.4359 0.5101 1.5137 0.2204 3.2941 0.0716 2.2355 0.1371 

Site*Burn Status 4.0577 0.0191 2.1305 0.1221 1.4484 0.2384 1.1949 0.3058 

Season 14.2668 <0.0001 9.9332 <0.0001 0.158 0.854 0.0409 0.9599 

Site*Season 3.5111 0.0089 3.7648 0.0059 0.4797 0.7506 1.2146 0.3073 

Burn Status*Season 0.1248 0.8828 2.6809 0.0715 0.1755 0.8392 0.6529 0.5221 
Site*Burn Status* 

Season 1.84 0.1237 0.6932 0.5977 0.9291 0.449 2.261 0.0655 
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Figure 2. Box plot of abundance and richness of leaf litter-dwelling macroinvertebrates 
depicting overall trends across site and sampling date. The three-factor ANOVA produced a 

significant model: abundance (F=6.4343, P<0.0001, Table 3) and richness (F=6.95, P<0.0001, 
Table 3). 
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Figure 3. Box plot of abundance and richness of leaf litter-dwelling macroinvertebrates at the 
different sampling dates, the three field sites combined. Letters indicate the results of the post-

hoc Tukey’s HSD test. Different letters within a panel indicate significant differences in mean 
abundance or richness between different collection times since the fire had occurred.  
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Figure 4. Box plot of abundance and richness of leaf litter-dwelling macroinvertebrates at the 
three different collection sites. Letters indicate the results of the post-hoc Tukey’s HSD test. 

Different letters within a panel indicate significant differences in mean abundance or richness 
between different collection sites. The factors were site, burn status, and season.  
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Figure 5. Box plot of abundance and richness of leaf litter-dwelling macroinvertebrates 
comparing burned and unburned plots. Different letters within a panel indicate significant 

differences in mean abundance or richness between burned and unburned plots.  
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Figure 6. Box plot of abundance and richness of leaf litter-dwelling macroinvertebrates at the 
different collection seasons, the three sites are combined. Letters indicate the results of the post-

hoc Tukey’s HSD test. Different letters within a panel indicate significant differences in mean 
abundance or richness between different collection seasons.   
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Figure 7. Box plot of abundance and richness of leaf litter-dwelling macroinvertebrates at the 
three different collection sites. Letters indicate the results of the post-hoc Tukey’s HSD test. 

Different letters within a panel indicate significant differences in mean abundance or richness 
between different collection sites. Factors were site, burn status, and sampling date.  
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Figure 8. Box plot of abundance and richness of soil-dwelling macroinvertebrates depicting 
overall trends across site and sampling date. The three-factor ANOVA produced a significant 

model: abundance (F=3.55, P<0.0001, Table 3) and richness (F=4.88, P<0.0001, Table 3).  
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Figure 9. Box plot of abundance and richness of soil-dwelling macroinvertebrates at the 
different sampling dates, the three sites are combined. Letters indicate the results of the post-hoc 

Tukey’s HSD test. Different letters within a panel indicate significant differences in mean 
abundance or richness between different collection times since the fire had occurred.  
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Figure 10. Box plot of abundance and richness of soil-dwelling macroinvertebrates at the three 
different collection sites. Letters indicate the results of the post-hoc Tukey’s HSD test. Different 

letters within a panel indicate significant differences in mean abundance or richness between 
different collection sites.  
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Figure 11. Box plot of abundance and richness of millipedes collected from the leaf litter 
depicting overall trends across site and sampling date. The three-factor ANOVA produced a 

significant model: abundance (F=10.56, P<0.0001, Table 5) and richness (F=4.67, P<0.0001, 
Table 5).  
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Figure 12. Box plot abundance and richness of millipedes collected from the litter at the 
different sampling dates, the three sites are combined. Letters indicate the results of the post-hoc 

Tukey’s HSD test. Different letters within a panel indicate significant differences in mean 
abundance or richness between different collection times since the fire had occurred.  
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Figure 13. Box plot of abundance and richness of millipedes collected from leaf litter at the 
different collection sites. Letters indicate the results of the post-hoc Tukey’s HSD test. Different 

letters within a panel indicate significant differences in mean abundance or richness between 
different collection sites.  
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Figure 14. Box plot of abundance and richness of millipedes collected from leaf litter at the 
different collection seasons, the three sites are combined. Letters indicate the results of the post-

hoc Tukey’s HSD test. Different letters within a panel indicate significant differences in mean 
abundance or richness between different collection seasons.  
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Figure 15. Box plot of abundance and richness of millipedes collected from the soil depicting 
overall trends across site and sampling date. The three-factor ANOVA produced a significant 

model: richness (F=1.87, P=0.0082, Table 5).   
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Primary Literature used for Millipede Identification 
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Appendix B 

Species List of Millipedes for each Study Site 

Great Smoky Mountains National Park 
Order Family Genus Species 

Callipodida Abacionidae Abacion sp.  

  Abacion magnum 
  Delophon sp. 

  Delophon georgianum 
Chordeumatida Cleidogonidae Cleidogona sp. 

  Cleidogona margarita 
  Cleidogona undescribed species A. 

 Striariidae   
Julida Parajulidae Ptyoiulius sp. 

  Ptyoiulius impressus 
  Uroblaniulus sp. 

 Zosteractinidae Ameractis sp. 

  Ameractis chirogona 
Platydesmida Andrognathidae Brachycybe lecontii 
  Brachycybe petasata 
Polydesmida Polydesmidae Pseudopolydesmus sp. 

  Pseudopolydesmus canadensis 
  Scytonotus sp. 

 Xystodesmidae Cherokia georgiana georgiana 
  Nannaria sp. 

  Nannaria scutellaria 
Spirobolida Spirobolidae Narceus americanus-annularis complex 
Spirostreptida Cambalidae Cambala sp. 

Rock Mountain 
Order Family Genus Species 

Callipodida Abacionidae Abacion sp. 

  Abacion magnum 
  Delophon sp. 

  Delophon georgianum 
Chordeumatida Cleidogonidae Cleidogona sp. 

  Cleidogona undescribed species B. 

 Striariidae   
 Trichopetalidae   
Julida Parajulidae Ptyoiulus sp. 
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  Ptyoiulus impressus 
  Uroblaniulus sp. 

Platydesmida Andrognathidae Brachycybe lecontii 
Polydesmida Euryuridae   
 Polydesmidae Pseudopolydesmus sp. 

  Pseudopolydesmus erasus 
  Scytonotus sp. 

 Xystodesmidae Cherokia georgiana georgiana 
  Erdelyia saucra 
  Nannaria sp. 

  Sigmoria sp. 

Spirobolida Spirobolidae Narceus americanus-annularis complex 
Spirostreptida Cambalidae Cambala  

Rough Ridge 
Order Family Genus Species 

Callipodida Abacionidae Abacion sp. 

Chordeumatida Cleidogonidae Cleidogona sp. 

  Cleidogona inexpectata 
  Cleidogona major 
  Cleidogona undescribed species C. 

Julida Parajulidae Ptyoiulus sp. 

  Ptyoiulus impressus 
Polydesmida Euryuridae   
 Polydesmidae Pseudopolydesmus sp. 

  Pseudopolydesmus erasus 
  Scytonotus australis 
 Xystodesmidae Apheloria sp. 

  Apheloria montana 
  Brachoria initialis 
  Cherokia georgiana georgiana 
  Nannaria sp. 

  Nannaria undescribed species A. 

  Sigmoria sp. 

Spirobolida Spirobolidae Narceus americanus-annularis complex 
Spirostreptida Cambalidae Cambala sp. 

  Cambala annulata 
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Millipede Site Species List Notes 

There were several undescribed species found through the course of the study. Each 

research site had an undescribed Cleidogona species, designated A, B, and C in our species lists. 

The other undescribed species was in the genus Nannaria, found at the Rough Ridge site. This is 

one of the first records of Nannaria in Georgia.  

The Rock Mountain site had over 100 juvenile millipedes we were only able to identify 

to family, Xystodesmidae. Millipedes can only definitively be identified to species level using 

the morphology of the adult male reproductive structures, the gonopods. Without adult male 

specimens, many times the millipedes can only be identified to family or genus level using other 

external morphological characteristics. There has been a big push within the last few years to 

utilize DNA barcoding as a means of identification to species level for juveniles and females. 

However, a good foundational database of established barcodes is needed before this use can be 

widespread. Barcodes are a good option as a tool for identification, however we need better 

identification resources in general. Most of the primary literature available for millipede 

identification is found in individual proceedings based on genera making it extremely tedious to 

go through all of the literature to find the exact paper required for a specimen. Additionally, 

many of these are older papers lacking keys or lacking detailed drawings of relevant characters. 

With the advancements in photography there is a need for high-quality images of the millipedes’ 

gonopods as well as other external morphological features.  
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