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Lie-central derivations, Lie-centroids and Lie-stem
Leibniz algebras

By GUY ROGER BIYOGMAM (Milledgeville), JOSÉ MANUEL CASAS (Pontevedra)

and NATÁLIA PACHECO REGO (Barcelos)

Abstract. In this paper, we introduce the notion of a Lie-derivation. This con-

cept generalizes derivations for non-Lie Leibniz algebras. We study these Lie-derivations

in the case where their image is contained in the Lie-center, and call them Lie-central

derivations. We provide a characterization of Lie-stem Leibniz algebras by their Lie-

central derivations, and prove several properties of the Lie algebra of Lie-central deriva-

tions for Lie-nilpotent Leibniz algebras of class 2. We also introduce ID∗-Lie-derivations.

An ID∗-Lie-derivation of a Leibniz algebra g is a Lie-derivation of g in which the image

is contained in the second term of the lower Lie-central series of g, and which vanishes

on Lie-central elements. We provide an upper bound for the dimension of the Lie alge-

bra IDLie
∗ (g) of ID∗-Lie-derivation of g, and prove that the sets IDLie

∗ (g) and IDLie
∗ (q) are

isomorphic for any two Lie-isoclinic Leibniz algebras g and q.

1. Introduction

Studies such as the work of Dixmier [13], Leger [16] and Tôgô [20]–[23]

about the structure of a Lie algebra L and its relationship with the properties of

the Lie algebra of derivations of L have been conducted by several authors. A clas-

sical problem concerning the algebra of derivations is to determine necessary and

sufficient conditions under which subalgebras of the algebra of derivations coin-

cide. For example, the coincidence of the subalgebra of central derivations with
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the algebra of derivations of a Lie algebra was studied in [21]. Also, centroids

play important roles in the study of extended affine Lie algebras [2], in the in-

vestigations of the Brauer groups and division algebras, in the classification of

algebras or in the structure theory of algebras. Almost inner derivations arise

in many contexts of algebra, number theory or geometry, for instance, they play

an important role in the study of isospectral deformations of compact solvman-

ifolds [15]; the paper [6] is dedicated to studying almost inner derivations of Lie

algebras.

Our aim in this paper is to conduct an analogue study by investigating various

concepts of derivations on Leibniz algebras. Our study relies on the relative

notions of these derivations; derivations relative to the Liezation functor (−)Lie :

Leib → Lie, which assigns to a Leibniz algebra g the Lie algebra g
Lie

, where Leib

denotes the category of Leibniz algebras, and Lie denotes the category of Lie

algebras.

The approached properties are closely related to the relative notions of central

extension in a semi-abelian category with respect to a Birkhoff subcategory (see

[11] and [14]). A recent research line deals with the development of absolute

properties of Leibniz algebras (absolute are the usual properties and it means

relative to the abelianization functor) in the relative setting (with respect to the

Liezation functor); in general, absolute properties have the corresponding relative

ones, but not all absolute properties immediately hold in the relative case, so new

requirements are needed as it can be seen in the papers [3]–[5], [8], [10] and [19].

In order to develop a systematic study of derivations in the relative set-

ting, we organize the paper as follows. In Section 2, we provide some background

on relative notions with respect to the Liezation functor. We define the sets of

Lie-derivations DerLie(g) and central Lie-derivations DerLiez (g) for a non-Lie Leib-

niz algebra g. It is worth mentioning that the absolute derivations are also Lie-

derivations. In Section 3, we characterize Lie-stem Leibniz algebras using their

Lie-central derivations. Using Lie-isoclinism, we prove several results on the Lie

algebra of Lie-central derivations of Lie-nilpotent Leibniz algebras of class two.

Specifically, we prove that DerLiez (g) is abelian if and only if ZLie(g) = γLie2 (g),

under the assumption that g is a finite dimensional Lie-nilpotent Leibniz algebra

of class 2. In Section 4, we define the Lie-centroid ΓLie(g) of g and prove several of

its basic properties. In particular, we study its relationship with the Lie-algebra

DerLiez (g). In Section 5, we study the set IDLie
∗ (g) of ID∗-Lie-derivations of a Leib-

niz algebra g and its subalgebra DerLiec (g) of almost inner Lie-derivations of g.

Similarly to the result of Tôgô [22] on derivations of Lie algebras, we provide

necessary and sufficient conditions on a finite dimensional Leibniz algebra g for
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the subalgebras DerLiez (g) and ID∗(g) to be equal. We also prove that if two Leib-

niz algebras are Lie-isoclinic, then their sets of ID∗-Lie-derivations are isomorphic.

This isomorphism also holds for their sets of almost inner Lie-derivations. We es-

tablish several results on almost inner Lie-derivations, similarly to the Lie algebra

case [6]. Finally, we provide an upper bound of the dimension of ID∗(g) by means

of the dimension of [g, g]Lie.

2. Preliminaries on Leibniz algebras

Let K be a fixed field of characteristic different from 2. Throughout the

paper, all vector spaces and tensor products are considered over K.

A Leibniz algebra [17]–[18] is a vector space g equipped with a bilinear map

[−,−] : g × g → g, usually called the Leibniz bracket of g, satisfying the Leibniz

identity :

[x, [y, z]] = [[x, y], z]− [[x, z], y], x, y, z ∈ g.

In fact, this definition corresponds to the notion of right Leibniz algebra,

which means that the right operator Rx : g → g, Rx(y) = [y, x], is a derivation.

Correspondingly, the notion of left Leibniz algebra is associated with the fact that

the left operation Lx : g → g, Lx(y) = [x, y], is a derivation, which means that

the identity [[x, y], z] = [x, [y, z]]− [y, [x, z]] holds for all x, y, z ∈ g. The passage

from the right to the left Leibniz algebra can be done considering the new bracket

operation [x, y]′ = [y, x]. Throughout this paper, we only consider right Leibniz

algebras.

A subalgebra h of a Leibniz algebra g is said to be a left (resp. right) ideal

of g if [h, g] ∈ h (resp. [g, h] ∈ h), for all h ∈ h, g ∈ g. If h is both a left and

a right ideal, then h is called a two-sided ideal of g. In this case, g/h naturally

inherits a Leibniz algebra structure.

Given a Leibniz algebra g, we denote by gann the subspace of g spanned by

all elements of the form [x, x], x ∈ g. It is clear that the quotient gLie = g/gann

is a Lie algebra. This defines the so-called Liezation functor (−)Lie : Leib → Lie,

which assigns to a Leibniz algebra g the Lie algebra gLie . Moreover, the canonical

epimorphism g � gLie is universal among all homomorphisms from g to a Lie

algebra, implying that the Liezation functor is left adjoint to the inclusion functor

Lie ↪→ Leib.

Given a Leibniz algebra g, we define the bracket

[−,−]lie : g→ g, by [x, y]lie = [x, y] + [y, x], for x, y ∈ g.
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Let m, n be two-sided ideals of a Leibniz algebra g. The following notions

come from [10], which were derived from [11].

The Lie-commutator of m and n is the two-sided ideal of g:

[m, n]Lie = 〈{[m,n]lie,m ∈ m, n ∈ n}〉.

The Lie-center of the Leibniz algebra g is the two-sided ideal

ZLie(g) = {z ∈ g | [g, z]lie = 0 for all g ∈ g}.

The Lie-centralizer of m and n over g is

CLie
g (m, n) = {g ∈ g | [g,m]lie ∈ n, for all m ∈ m} .

Obviously, CLie
g (g, 0) = ZLie(g).

The right-center of a Leibniz algebra g is the two-sided ideal Zr(g) = {x ∈
g | [y, x] = 0 for all y ∈ g}. The left-center of a Leibniz algebra g is the set

Zl(g) = {x ∈ g | [x, y] = 0 for all y ∈ g}, which might not even be a subalgebra.

Z(g) = Zl(g) ∩ Zr(g) is called the center of g, which is a two-sided ideal of g.

Definition 2.1 ([10]). Let n be a two-sided ideal of a Leibniz algebra g. The

lower Lie-central series of g relative to n is the sequence

· · · E γLiei (g, n) E · · · E γLie2 (g, n) E γLie1 (g, n)

of two-sided ideals of g defined inductively by

γLie1 (g, n) = n and γLiei (g, n) = [γLiei−1(g, n), g]Lie, i ≥ 2.

We use the notation γLiei (g) instead of γLiei (g, g), 1 ≤ i ≤ n.

If ϕ : g → q is a homomorphism of Leibniz such that ϕ(m) ⊆ n, where m is

a two-sided ideal of g, and n a two-sided ideal of q, then ϕ(γLiei (g,m)) ⊆ γLiei (q, n),

i ≥ 1.

Definition 2.2. The Leibniz algebra g is said to be Lie-nilpotent relative to n

of class c if γLiec+1(g, n) = 0 and γLiec (g, n) 6= 0.

Definition 2.3 ([10]). The upper Lie-central series of a Leibniz algebra g is

the sequence of two-sided ideals, called i-Lie centers, i = 0, 1, 2, . . . ,

ZLie
0 (g) E ZLie

1 (g) E · · · E ZLie
i (g) E · · ·

defined inductively by

ZLie
0 (g) = 0 and ZLie

i (g) = CLie
g (g,ZLie

i−1(g)), i ≥ 1.
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Theorem 2.4 ([10, Theorem 4]). A Leibniz algebra g is Lie-nilpotent of

class c if and only if ZLie
c (g) = g and ZLie

c−1(g) 6= g.

Definition 2.5 ([8, Definition 2.8]). Let m be a subset of a Leibniz algebra g.

The Lie-normalizer of m is the subset of g:

Ng(m) = {g ∈ g | [g,m], [m, g] ∈ m, for all m ∈ m}.

Definition 2.6 ([10, Proposition 1]). An exact sequence of Leibniz algebras

0 → n → g
π→ q → 0 is said to be a Lie-central extension if [g, n]Lie = 0, equiva-

lently, n ⊆ ZLie(g).

Definition 2.7. A linear map d : g→ g of a Leibniz algebra (g, [−,−]) is said

to be a Lie-derivation if for all x, y ∈ g, the following condition holds:

d([x, y]lie) = [d(x), y]lie + [x, d(y)]lie.

We denote by DerLie(g) the set of all Lie-derivations of a Leibniz algebra g,

which can be equipped with a structure of Lie algebra by means of the usual

bracket [d1, d2] = d1 ◦ d2 − d2 ◦ d1, for all d1, d2 ∈ DerLie(g).

Example 2.8. The absolute derivations, that is the linear maps d : g→ g such

that d([x, y]) = [d(x), y] + [x, d(y)], are also Lie-derivations, since:

d([x, y]lie) = d([x, y] + [y, x]) = [d(x), y]lie + [x, d(y)]lie, for all x, y ∈ g. (1)

In particular, for a fixed x ∈ g, the inner derivation Rx : g → g, Rx(y) = [y, x],

for all y ∈ g, is a Lie-derivation, so it gives rise to the following identity:

[[y, z]lie, x] = [[y, x], z]lie + [y, [z, x]]lie, for all x, y ∈ g.

However, there are Lie-derivations which are not derivations. For instance,

every linear map d : g → g is a Lie-derivation for any Lie algebra g, but it is not

a derivation in general.

Definition 2.9. A Lie-derivation d : g→ g of a Leibniz algebra g is said to be

a Lie-central derivation if its image is contained in the Lie-center of g.

Remark 2.10. The absolute notion corresponding to Definition 2.9 is the so-

called central derivation, that is a derivation d : g→ g whose image is contained

in the center of g. Obviously, every central derivation is a Lie-central derivation.

However, the converse is not true as the following example shows. Let g be the

two-dimensional Leibniz algebra with basis {e, f} and bracket operation given by

[e, f ] = −[f, e] = e [12]. Then the inner derivation Re is a Lie-central derivation,

but it is not central in general.
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We denote the set of all Lie-central derivations of a Leibniz algebra g by

DerLiez (g). Obviously, DerLiez (g) is a subalgebra of DerLie(g), and every element

of DerLiez (g) annihilates γLie2 (g). One has that DerLiez (g) = CDerLie(g)((R + L)(g)),

where L(g) = {Lx | x ∈ g}, Lx denotes the left multiplication operator Lx(y) =

[x, y], R(g) = {Rx | x ∈ g} and Cg(m) = {x ∈ g | [x, y] = 0 = [y, x], for all y ∈ m},
the absolute centralizer of an ideal m over the Leibniz algebra g.

Let A and B be two Leibniz algebras, and denote by T (A,B) the set of all

linear transformations from A to B. Clearly, T (A,B) endowed with the bracket

[f, g](x) = [f(x), g(x)] is an abelian Leibniz algebra if B is also an abelian Leibniz

algebra.

Consider the Lie-central extensions (g) : 0→ n
χ→ g

π→ q→ 0 and (gi) : 0→
ni

χi→ gi
πi→ qi → 0, i = 1, 2.

Let C : q × q → [g, g]Lie be given by C(q1, q2) = [g1, g2]lie, where π(gj) =

qj , j = 1, 2, the Lie-commutator map associated to the extension (g). In a similar

way are defined the Lie-commutator maps Ci corresponding to the extensions

(gi), i = 1, 2.

Note that if q is a Lie algebra, then π([g, g]Lie) = 0, hence [g, g]Lie ⊆ n ≡ χ(n).

Definition 2.11 ([3, Definition 3.1]). The Lie-central extensions (g1) and (g2)

are said to be Lie-isoclinic when there exist isomorphisms η : q1 → q2 and ξ :

[g1, g1]Lie → [g2, g2]Lie such that the following diagram is commutative:

q1 × q1
C1 //

η×η

��

[g1, g1]Lie

ξ

��
q2 × q2

C2 // [g2, g2]Lie

(2)

The pair (η, ξ) is called a Lie-isoclinism from (g1) to (g2), and it will be

denoted by (η, ξ) : (g1)→ (g2).

Let g be a Leibniz algebra. Then we can construct the following Lie-central

extension:

(eg) : 0→ ZLie(g)→ g
prg→ g/ZLie(g)→ 0. (3)

Definition 2.12 ([3, Definition 3.3]). Let g and q be Leibniz algebras. Then

g and q are said to be Lie-isoclinic when (eg) and (eq) are Lie-isoclinic Lie-central

extensions.

A Lie-isoclinism (η, ξ) from (eg) to (eq) is also called a Lie-isoclinism from g

to q, denoted by (η, ξ) : g ∼ q.
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Proposition 2.13 ([3, Proposition 3.4]). For a Lie-isoclinism (η, ξ) : (g1) ∼
(g2), the following statements hold:

(a) η induces an isomorphism η′ : g1/ZLie(g1)→ g2/ZLie(g2), and (η′, ξ) is a Lie-

isoclinism from g1 to g2.

(b) χ1(n1) = ZLie(g1) if and only if χ2(n2) = ZLie(g2).

Definition 2.14 ([19, Definition 4]). A Lie-stem Leibniz algebra is a Leibniz

algebra g such that ZLie(g) ⊆ [g, g]Lie.

Theorems 1 and 2 in [19] prove that every Lie-isoclinic family of Leibniz alge-

bras contains at least one Lie-stem Leibniz algebra, which is of minimal dimension

if it has finite dimension.

3. Lie-stem Leibniz algebras and Lie-central derivations

Proposition 3.1. If g is a Lie-stem Leibniz algebra, then DerLiez (g) is

an abelian Lie algebra.

Proof. Since DerLiez (g) is a subalgebra of DerLie(g), it is enough to show

that [d1, d2] = 0 for all d1, d2 ∈ DerLiez (g). First, we notice that if d ∈ DerLiez (g),

then d([x, y]lie) = 0 for all x, y ∈ g, since d(x), d(y) ∈ ZLie(g). So in particular,

d(ZLie(g)) = 0, since ZLie(g) ⊆ [g, g]Lie, as g is a Lie-stem Leibniz algebra. Now

let d1, d2 ∈ DerLiez (g) and x ∈ g. Then d1(x), d2(x) ∈ ZLie(g), which implies that

[d1, d2](x) = d1(d2(x))− d2(d1(x)) = 0. Hence [d1, d2] = 0. �

The converse of the above result is not true in general. Indeed, let g be

any Lie algebra. Then ZLie(g) = g, and so DerLiez (g) is an abelian Lie algebra.

However, g is not a Lie-stem Leibniz algebra, since ZLie(g) = g 6⊆ 0 = [g, g]Lie.

Proposition 3.2. Let g be a Lie-nilpotent finite dimensional Leibniz algebra

such that γLie2 (g) 6= 0. Then DerLiez (g) is abelian if and only if g is a Lie-stem Leibniz

algebra.

Proof. We only need to prove the converse of Proposition 3.1. Assume

that g is not a Lie-stem Leibniz algebra. Then, there is some z1 ∈ ZLie(g) such

that z1 /∈ [g, g]Lie. Since g is a Lie-nilpotent Leibniz algebra and γLie2 (g) 6= 0,

it follows that ZLie(g) ∩ [g, g]Lie 6= 0. Now, let H := 〈z1〉⊥ be the complement of

the subspace spanned by z1, and let z2 ∈ ZLie(g) ∩ [g, g]Lie, z2 6= 0. Consider d1
(d2, respectively) as the linear transformation of g vanishing on H and mapping

z1 to z1 (z1 to z2, respectively). Clearly, d1 and d2 are Lie-central derivations, and
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d1 and d2 do not commute, since [d1, d2](z1) = d1(d2(z1))−d2(d1(z1)) = −z2 6= 0.

Therefore, DerLiez (g) is not abelian. This completes the proof. �

Lemma 3.3. Let (η, ξ) be a Lie-isoclinism between the Leibniz algebras g

and q. If g is a Lie-stem Leibniz algebra, then ξ maps ZLie(g) onto ZLie(q)∩[q, q]Lie.

Proof. Since ZLie(g) ⊆ [g, g]Lie, an element z of ZLie(g) can be written as

z =
n∑
i=1

λi [xi, yi]lie, with λi ∈ K and xi, yi ∈ g, i = 1, . . . , n.

Let η′ : g/ZLie(g) −→ q/ZLie(q), η′ (xi + ZLie(g)) = η(xi)+ZLie(q) and η′ (yi+

ZLie(g)) = η(yi)+ZLie(q), i = 1, . . . , n, be the isomorphism provided by [3, Propo-

sition 3.4]. Then

ξ (z) + ZLie(q) = ξ

(
n∑
i=1

λi [xi, yi]lie

)
+ ZLie(q) =

n∑
i=1

λiξ [xi, yi]lie + ZLie(q)

=

n∑
i=1

λi [η(xi), η(yi)]lie + ZLie(q) = η′

(
n∑
i=1

λi [xi, yi]lie + ZLie(g)

)
= ZLie(q).

The surjective property can be easily established. �

Proposition 3.4. Let g and q be two Lie-isoclinic Leibniz algebras, and

g be a Lie-stem Leibniz algebra. Then every d ∈ DerLiez (g) induces a Lie-central

derivation d∗ of q. Moreover, the map d 7→ d∗ is a monomorphism from DerLiez (g)

into DerLiez (q).

Proof. Let (η, ξ) be a Lie-isoclinism between g and q, and let d ∈ DerLiez (g).

Then for any y ∈ q, we have y+ZLie(q) = η(x+ZLie(g)) for some x ∈ g, since η is

bijective. Now consider the map d∗ : q → q defined by d∗(y) = ξ(d(x)), which is

well-defined, since d(ZLie(g)) = 0 as ZLie(g) ⊆ [g, g]Lie. Moreover, d∗ ∈ DerLiez (q),

since d(x) ∈ ZLie(g) and ξ(d(x)) ∈ ZLie(q) ∩ [q, q]Lie by Lemma 3.3. Observe that

d∗ is a Lie-derivation, since d∗([y1, y2]lie) = ξ(d([x1, x2]lie)) = ξ([d(x1), x2]lie +

[x1, d(x2)]lie) = ξ(0 + 0) = 0 and [y1, d
∗(y2)]lie + [d∗(y1), y2]lie = 0, since d∗(y1),

d∗(y2) ∈ ZLie(q).

Clearly, the map φ : d→ d∗ is linear and one-to-one, since ξ an isomorphism.

To show that φ is compatible with the Lie-bracket, let d1, d2 ∈ DerLiez (g). Then

for i, j = 1, 2, we have di(g) ⊆ ZLie(g) ⊆ [g, g]Lie and dj([g, g]Lie) = 0. As a con-

sequence, on the one hand [d1, d2] = d1d2 − d2d1 = 0, and thus [d1, d2]∗ = 0,

as ξ is an isomorphism. On the other hand, d∗i (q) ⊆ ZLie(q) ∩ [q, q]Lie. So

d∗j (d
∗
i (q)) = 0, by definition of d∗j , and thus [d∗1, d

∗
2] = d∗1d

∗
2 − d∗2d∗1 = 0. Therefore,

φ([d1, d2]) = [φ(d1), φ(d2)]. This completes the proof. �
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Lemma 3.5. For any Lie-stem Leibniz algebra g, there is a Lie algebra

isomorphism DerLiez (g) ∼= T
(

g
[g,g]Lie

, ZLie(g)
)
.

Proof. Let d ∈ DerLiez (g), then d(g) ⊆ ZLie(g), and thus d([g, g]Lie) = 0. So d

induces the map g
[g,g]Lie

αd−→ ZLie(g) defined by αd(x+ [g, g]Lie) = d(x). Now define

the map β : DerLiez (g) −→ T
(

g
[g,g]Lie

, ZLie(g)
)

by β(d) = αd. Clearly, β is a linear

map, which is one-to-one by definition of αd.

β is onto, since for a given d∗ ∈ T
(

g
[g,g]Lie

, ZLie(g)
)

, there exists a linear

map d : g → ZLie(g), d = d∗ ◦ π, where π : g → g
[g,g]Lie

is the canonical

projection, such that β(d) = d∗. Finally, d ∈ DerLiez (g), since d([x, y]lie) =

d∗([π(x), π(y)]lie) = d∗(0) = 0. On the other hand, [d(x), y]lie + [x, d(y)]lie =

[d∗(π(x)), y]lie + [x, d∗(π(y))]lie = 0, since d∗(π(x)), d∗(π(y)) ∈ ZLie(g). To finish,

we show that β([d1, d2]) = [β(d1), β(d2)] for all d1, d2 ∈ DerLiez (g). Indeed, let

x ∈ g. It is clear that β([d1, d2])(π(x)) = α[d1,d2](π(x)) = [d1, d2](x) = 0, since

d1(g), d2(g) ⊆ ZLie(g) ⊆ [g, g]Lie and d1([g, g]Lie) = d2([g, g]Lie) = 0. On the other

hand, [β(d1), β(d2)](π(x)) = [αd1 , αd2 ](π(x)) = αd1(d2(x)) − αd2(d1(x)) = 0,

since αd1([g, g]Lie) = 0 = αd2([g, g]Lie). Hence β([d1, d2]) = [β(d1), β(d2)]. This

completes the proof. �

Corollary 3.6. For any arbitrary Leibniz algebra q, the Lie algebra DerLiez (q)

has a central subalgebra n isomorphic to T
(

g
[g,g]Lie

, ZLie(g)
)

for some Lie-stem

Leibniz algebra g Lie-isoclinic to q. Moreover, each element of n sends ZLie(q) to

the zero subalgebra.

Proof. By [5, Corollary 4.1], there is a Lie-stem Leibniz algebra g that

is Lie-isoclinic to q. Denote this Lie-isoclinism by (η, ξ). Now, by the proof of

Proposition 3.4, n := {d∗ | d ∈ DerLiez (g)} is a subalgebra of DerLiez (q) isomorphic

to DerLiez (g). Moreover, n is a central subalgebra of DerLiez (q). Indeed, let d0 ∈ n

and d1 ∈ DerLiez (q). Then for any y ∈ q, we have by definition, d∗0(y) = ξ(d0(x))

with π2(y) = η(π1(x)). So d1(d∗0(y)) = 0, since d∗0(q) ⊆ ZLie(q) ∩ [q, q]Lie by

Lemma 3.3, and d1([q, q]Lie) = 0. Also, d∗0(ZLie(q)) = 0, since η is one-to-one and ξ

is a homomorphism. In particular, d∗0(d1(y)) = 0, since d1(q) ⊆ ZLie(q). Therefore

[d∗0, d1] = 0. Moreover, for any d∗0 ∈ n, we have d∗0(ZLie(q)) = 0 as mentioned

above. To complete the proof, notice that DerLiez (g) ∼= T
(

g
[g,g]Lie

, ZLie(g)
)

due to

Lemma 3.5. �

Lemma 3.7. Let g and q be two Lie-isoclinic Leibniz algebras. If g is Lie-

nilpotent of class c, then so is q.
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Proof. Notice that for all g ∈ g and x1, x2, . . . , xi ∈ g, and setting t̄ :=

t+ ZLie(g), t = g, x1, x2, . . . , xi, we have

[[[ḡ, x̄1]lie, x̄2]lie, . . . , x̄i]lie = [[[g, x1]lie, x2]lie, . . . , xi]lie + ZLie(g).

So g ∈ ZLie
i+1(g) if and only if g + ZLie(g) ∈ ZLie

i (g/ZLie(g)). Thus ZLie
i+1(g)/ZLie(g)

= ZLie
i (g/ZLie(g)). If (η, ξ) is the Lie-isoclinism between g and q, as η is an iso-

morphism, we have

η(ZLie
i+1(g)/ZLie(g)) = η(ZLie

i (g/ZLie(g))) = ZLie
i (q/ZLie(q)).

It follows that

g/ZLie
i+1(g) ∼=

g/ZLie(g)

ZLie
i+1(g)/ZLie(g)

∼=
q/ZLie(q)

ZLie
i+1(q)/ZLie(q)

∼= q/ZLie
i+1(q).

Now, assume that g is Lie-nilpotent of class c. Then ZLie
c (g) = g. So q/ZLie

c (q) ∼=
g/ZLie

c (g)=0, implying that ZLie
c (q)=q. Also, g/ZLie

c−1(g) 6=0 ⇐⇒ q/ZLie
c−1(q) 6=0.

Hence q is also Lie-nilpotent of class c. �

Corollary 3.8. Let q be a Lie-nilpotent Leibniz algebra of class 2. Then

DerLiez (q) has a central subalgebra isomorphic to T
(

q
ZLie(q)

, [q, q]Lie

)
containing

(R+ L)(q).

Proof. By [5, Corollary 4.1], there is a Lie-stem Leibniz algebra g Lie-

isoclinic to q. Denote this Lie-isoclinism by (η, ξ). Since q is a Lie-nilpotent Leibniz

algebra of class 2, so is g, due to to Lemma 3.7. Then ZLie(g) = [g, g]Lie
ξ∼= [q, q]Lie,

and g
[g,g]Lie

∼= g
ZLie(g)

η∼= q
ZLie(q)

. So T
(

g
[g,g]Lie

, ZLie(g)
)
∼= T

(
q

ZLie(q)
, [q, q]Lie

)
. There-

fore DerLiez (q) has a central subalgebra n isomorphic to T
(

q
ZLie(q)

, [q, q]Lie

)
, due to

to Corollary 3.6. Moreover, the map ζ : q
ZLie(q)

→ T
(

q
ZLie(q)

, [q, q]Lie

)
defined by

x+ ZLie(q) 7→ ζ(x+ ZLie(q)) : q
ZLie(q)

→ [q, q]Lie with ζ(x+ ZLie(q))(y + ZLie(q)) =

[x, y]lie, is a well-defined one-to-one linear map, since for all x, x′ ∈ q,

x− x′ ∈ ZLie(q) ⇐⇒ [x− x′, y]lie = 0 for all y ∈ q

⇐⇒ [x, y]lie = [x′, y]lie for all y ∈ q

⇐⇒ ζ(x)(y + ZLie(q)) = ζ(x′)(y + ZLie(q)) for all y ∈ q

⇐⇒ ζ(x) = ζ(x′).

Here we use the notation x = x+ ZLie(q).

Finally, (R + L)(q) = Im(ζ) ⊆ T
(

q
ZLie(q)

, [q, q]Lie

)
, since ζ(x)(y) = [x, y]lie =

[x, y] + [y, x] = Lx(y) +Rx(y). �
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For any Leibniz algebra g with γLie2 (g) abelian, we put

K(g) :=
⋂

Ker
(
f : g→ γLie2 (g)

)
.

Lemma 3.9. Let q be a Lie-nilpotent Leibniz algebra of class 2. Then

γLie2 (q) = K(q).

Proof. Let f : q → γLie2 (q) be a homomorphism of Leibniz algebras. Then

for all q1, q2 ∈ q, we have f([q1, q2]lie) = [f(q1), f(q2)]lie ∈ [γLie2 (q), γLie2 (q)]Lie ⊆
γLie3 (q) = 0 as q is Lie-nilpotent of class 2. So γLie2 (q) ⊆ Ker(f). Therefore γLie2 (q) ⊆
K(q), since f is arbitrary.

For the reverse inclusion, we proceed by contradiction. Let x ∈ K(q) such

that x /∈ γLie2 (q), and let h be the complement of 〈x〉 in q. Then h is a maximal

subalgebra of q. So either h + γLie2 (q) = h or h + γLie2 (q) = q. The latter is not

possible. Indeed, if h + γLie2 (q) = q, then γLie2 (q) = γLie2 (h + γLie2 (q)) ⊆ γLie2 (h) +

γLie3 (q). But since q is a Lie-nilpotent Leibniz algebra of class 2, it gives γLie3 (q) = 0,

which implies that γLie2 (q) = γLie2 (h), and thus q = h + γLie2 (q) = h + γLie2 (h) = h,

a contradiction. So we have h + γLie2 (q) = h, and thus γLie2 (q) ⊆ h, which implies

that h is a two-sided ideal of q. Now, choose q0 ∈ γLie2 (q), and consider the

mapping f : q → γLie2 (q) defined by h + αx 7→ αq0. Clearly, f is a well-defined

homomorphism of Leibniz algebras, and Ker(f) = h. This is a contradiction, since

x ∈ K(q) and x /∈ h. Thus K(q) ⊆ γLie2 (q). �

Theorem 3.10. Let q be a Lie-nilpotent Leibniz algebra of class 2. Then

Z
(
DerLiez (q)

)
∼= T

(
q

ZLie(q)
, [q, q]Lie

)
.

Proof. By the proof of Corollary 3.8, DerLiez (q) has a central subalgebra n

isomorphic to T
(

q
ZLie(q)

, [q, q]Lie

)
, where n := {d∗ | d ∈ DerLiez (g)} for some Lie-

stem Leibniz algebra g Lie-isoclinic to q. Denote this Lie-isoclinism by (η, ξ).

It remains to show that Z
(
DerLiez (q)

)
⊆ n, that is, given T ∈ Z

(
DerLiez (q)

)
,

we must find d ∈ DerLiez (g) such that T = d∗.

First, we claim that T (q) ⊆ K(q). Indeed, let f : q → [q, q]Lie be a ho-

momorphism of Leibniz algebras. Then consider the mapping tf : q → q de-

fined by tf (z) = f(z). Clearly, tf ∈ DerLiez (q), since tf (q) ⊆ [q, q]Lie = ZLie(q)

as q is a Lie-nilpotent Leibniz algebra of class 2. So [T, tf ] = 0, and thus

f(T (z)) = tf (T (z)) = T (tf (z)) = 0 for all z ∈ q, since tf (z) ∈ [q, q]Lie and

T ([q, q]Lie) = 0 as T ∈ DerLiez (q). Therefore T (q) ⊆ Ker(f). Hence T (q) ⊆ K(q),

since f is arbitrary, which proves the claim.



228 G. R. Biyogmam, J. M. Casas and N. Pacheco Rego

It follows from Lemma 3.9 that T (q) ⊆ [q, q]Lie. Now, for any x ∈ g, we have

x + ZLie(g) = η−1(y + ZLie(q)) for some y ∈ q, since η is bijective. Consider the

map d : g→ g defined by x 7→ ξ−1(T (y)). Clearly, d is well-defined, and it is easy

to show that d ∈ DerLiez (g), since T (q) ⊆ [q, q]Lie = ZLie(q). Hence T = d∗. This

completes the proof. �

Corollary 3.11. Let q be a finite dimensional Lie-nilpotent Leibniz algebra

of class 2. Then DerLiez (q) is abelian if and only if γLie2 (q) = ZLie(q).

Proof. Assume that γLie2 (q) = ZLie(q), then by Proposition 3.2, DerLiez (q) is

abelian, since q is a Lie-stem Leibniz algebra. Conversely, suppose that DerLiez (q)

is an abelian Lie algebra. Then, again by Proposition 3.2, q is a Lie-stem Leibniz

algebra. This implies by Lemma 3.5 that DerLiez (q) ∼= T
(

q
γLie
2 (q)

, ZLie(q)
)
. Also,

by Theorem 3.10, DerLiez (q) = Z
(
DerLiez (q)

)
∼= T

(
q

ZLie(q)
, γLie2 (q)

)
. It follows that

T
(

q
γLie
2 (q)

, ZLie(q)
)
∼= T

(
q

ZLie(q)
, γLie2 (q)

)
. Now, let K be the K-vector subspace

complement of ZLie(q) in γLie2 (q). We claim that K = 0. Indeed, since as vector

spaces ZLie(q)⊕K = γLie2 (q), it holds

T

(
q

ZLie(q)
, γLie2 (q)

)
= T

(
q

ZLie(q)
, ZLie(q)

)
⊕ T

(
q

ZLie(q)
,K

)
.

As q
ZLie(q)

� q
γLie
2 (q)

by the Snake Lemma, it follows that T
(

q
ZLie(q)

, γLie2 (q)
)
∼=

T
(

q
γLie
2 (q)

, ZLie(q)
)

is isomorphic to a subalgebra of T
(

q
ZLie(q)

, ZLie(q)
)
. Hence

T
(

q
γLie
2 (q)

,K
)

= 0. This completes the proof. �

Example 3.12. The following is an example of a Leibniz algebra satisfying

the requirements of Corollary 3.11.

Let q be the three-dimensional Leibniz algebra with basis {a1, a2, a3} and

bracket operation given by [a2, a2] = [a3, a3] = a1 and zero elsewhere (see alge-

bra 2 (c) in [9]). It is easy to check that γLie2 (q) = ZLie(q) =< {a1} >.

4. Lie-central derivations and Lie-centroids

Definition 4.1. The Lie-centroid of a Leibniz algebra g is the set of all linear

maps d : g→ g satisfying the identities

d([x, y])lie = [d(x), y]lie = [x, d(y)]lie

for all x, y ∈ g. We denote this set by ΓLie(g).
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Proposition 4.2. For any Leibniz algebra g, ΓLie(g) is a subalgebra of End(g)

such that DerLiez (g) = DerLie(g) ∩ ΓLie(g).

Proof. Assume that d ∈ DerLie(g) ∩ ΓLie(g). For all x, y ∈ g, we have that

d([x, y]lie) = [d(x), y]lie + [x, d(y)]lie; on the other hand, d([x, y]lie) = [x, d(y)]lie,

hence [d(x), y]lie = 0 for any y ∈ g, that is d(x) ∈ ZLie(g).

Conversely, DerLiez (g) is a subalgebra of DerLie(g), and for any d ∈ DerLiez (g),

we have d([x, y]lie)=[d(x), y]lie+[x, d(y)]lie =0, since [d(x), y]lie =0, [x, d(y)]lie =0,

for any x, y ∈ g, hence d ∈ ΓLie(g). �

Proposition 4.3. Let g be a Leibniz algebra. For any d ∈ DerLie(g) and

φ ∈ ΓLie(g), the following statements hold:

(a) DerLie(g) ⊆ NDerLie(g)(Γ
Lie(g)).

(b) d ◦ φ ∈ ΓLie(g) if and only if φ ◦ d ∈ DerLiez (g).

(c) d ◦ φ ∈ DerLie(g) if and only if [d, φ] ∈ DerLiez (g).

Proof. (a) Straightforward verification.

(b) Assume d ◦ φ ∈ ΓLie(g). Then

[φ, d]([x, y]lie) = (φ ◦ d)([x, y]lie)− (d ◦ φ)([x, y]lie)

= [(φ ◦ d) (x) , y]lie + [x, (φ ◦ d) (y)]lie − [(d ◦ φ) (x), y]lie

= [[φ, d](x), y]lie + [x, (φ ◦ d) (y)]lie

= [φ, d]([x, y]lie) + [x, (φ ◦ d) (y)]lie .

Therefore [x, (φ ◦ d) (y)]lie = 0. Similarly, [(d ◦ φ) (x), y]lie = 0.

Conversely, assume φ◦d ∈ DerLiez (g). Then [d, φ]([x, y]lie) = (d◦φ)([x, y]lie)−
(φ ◦ d)([x, y]lie), hence (d ◦ φ)([x, y]lie) = [d, φ]([x, y]lie), since (φ ◦ d)([x, y]lie) = 0.

Now it is a routine task to check that [d, φ] ∈ ΓLie(g), which completes the proof.

(c) Assume d◦φ ∈ DerLie(g). A direct computation shows that [φ, d] ∈ ΓLie(g).

On the other hand, it is easy to check that [d, φ] ∈ DerLie(g), therefore [φ, d] =

− [d, φ] ∈ ΓLie(g) ∩ DerLie(g). Proposition 4.2 completes the proof.

Conversely, assume [d, φ] ∈ DerLiez (g), then (d◦φ) ([x, y]lie) = [d, φ] ([x, y]lie)+

(φ ◦ d) ([x, y]lie) = (φ ◦ d) ([x, y]lie). Now it is easy to check that φ ◦ d is a Lie-

derivation of g. �

Definition 4.4. Let m be a two-sided ideal of a Leibniz algebra g. Then m is

said to be ΓLie(g)-invariant if ϕ(m) ⊂ m for all ϕ ∈ ΓLie(g).
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Proposition 4.5. Let g be a Leibniz algebra and m be a two-sided ideal

of g. The following statements hold:

(a) CLie
g (m, 0) is invariant under ΓLie(g).

(b) Every Lie-perfect two-sided ideal m (m = γLie2 (m)) of g is invariant under

ΓLie(g).

Proof. (a) Let g ∈ CLie
g (m, 0) and ϕ ∈ ΓLie(g), then ϕ (g) ∈ CLie

g (m, 0), since

[ϕ (g) ,m]lie = ϕ[g,m]lie = 0, for all m ∈ m.

(b) Let m be a Lie-perfect two-sided ideal of g and let ϕ ∈ ΓLie(g). Then

any x ∈ m can be written as x =
n∑
i=1

λi[mi1,mi2]lie,mi1,mi2 ∈ m, hence ϕ (x) =

n∑
i=1

λi[ϕ (mi1) ,mi2]lie ∈ m. �

Theorem 4.6. Let m be a nonzero ΓLie(g)-invariant two-sided ideal of a Leib-

niz algebra g, V (m) = {ϕ ∈ ΓLie(g) | ϕ(m) = 0} and W = Hom
(
g
m , C

Lie
g (m, 0)

)
.

Define

T (m) = {f ∈W | f [x, y]lie = [f(x), y]lie = [x, f(y)]lie}

with x = x+ m and y = y + m. Then the following statements hold:

(a) T (m) is a vector subspace of W isomorphic to V (m).

(b) If ΓLie(m) = K.Idm, then ΓLie(g) = K.Idg ⊕ V (m) as vector spaces.

Proof. (a) Define α : V (m) −→ T (m) by α (ϕ) (x+ m) = ϕ (x).

Obviously, α is an injective, well-defined linear map and it is onto. Indeed,

for every f ∈ T (m), set ϕf : g −→ g, ϕf (x) = f (x+ m), for all x ∈ g. It is

easy to check that ϕf ∈ ΓLie(g) and ϕf (m) = 0, so ϕf ∈ V (m). Moreover,

α (ϕf ) (x+ m) = ϕf (x) = f (x+ m).

(b) If ΓLie(m) = K.Idm, then for all ψ ∈ ΓLie(g), we get ψ|m = λ.Idm, for some

λ ∈ K.

If ψ 6= λ.Idg, define ϕ : g → g by ϕ (x) = λx, then ϕ ∈ ΓLie(g) and ψ − ϕ ∈
V (m). Clearly, ψ = ϕ+ (ψ − ϕ) ∈ K.Idg + V (m). Furthermore, it is evident that

K.Idg ∩ V (m) = 0, which completes the proof. �

Corollary 4.7. If K is a field of characteristic zero, then the following equal-

ities hold:

DerLiez (g) = V (γLie2 (g)) = T (γLie2 (g)).

Proof. If d ∈ DerLiez (g), then d ∈ DerLie(g) ∩ ΓLie(g) by Proposition 4.2,

so [d (x) , y]lie = [x, d(y)]lie = 0, hence d ∈ V (γLie2 (g)).
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Conversely, if d ∈ V (γLie2 (g)), then d ∈ ΓLie(g) and d([x, y]lie) = 0, so

d([x, y]lie) = [d (x) , y]lie = [x, d (y)]lie = 0. Hence d([x, y]lie) = [d (x) , y]lie +

[x, d (y)]lie = 0, which implies that d ∈ DerLiez (g).

The second equality is provided by Theorem 4.6, since γLie2 (g) is ΓLie(g)-

invariant. �

Theorem 4.8. Let g be a Leibniz algebra such that g = g1 ⊕ g2, where g1,

g2 are two-sided ideals of g. Then the following isomorphism of K-vector spaces

holds:

ΓLie(g) ∼= ΓLie(g1)⊕ ΓLie(g2)⊕ C1 ⊕ C2,

where Ci = {ϕ ∈ Hom(gi, gj) | ϕ(gi) ⊆ ZLie(gj) and ϕ(γLie2 (gi)) = 0 for 1 ≤ i 6=
j ≤ 2}.

Proof. Let πi : g −→ gi be the canonical projection for i = 1, 2. Then

π1, π2 ∈ ΓLie(g) and π1 + π2 = Idg.

So we have for ϕ ∈ ΓLie(g) that ϕ = π1◦ϕ◦π1+π1◦ϕ◦π2+π2◦ϕ◦π1+π2◦ϕ◦π2.

Note that πi ◦ ϕ ◦ πj ∈ ΓLie(g) for i, j = 1, 2. So, by the above equality it

follows that

ΓLie(g) = π1ΓLie(g)π1 ⊕ π1ΓLie(g)π2 ⊕ π2ΓLie(g)π1 ⊕ π2ΓLie(g)π2

as vector spaces. Indeed, it is enough to show that πiΓ
Lie(g)πk∩πlΓLie(g)πj = 0 for

i, j, k, l = 1, 2, such that (i, j) 6= (k, l). For instance, π2ΓLie(g)π1∩π1ΓLie(g)π2 = 0,

since for any β ∈ π2ΓLie(g)π1 ∩ π1ΓLie(g)π2, there are some f1, f2 ∈ ΓLie(g) such

that β = π2 ◦ f1 ◦ π1 = π1 ◦ f2 ◦ π2, and then β (x) = π1 ◦ f2 ◦ π2 (x) = π1 ◦ f2 ◦
π2 (π2 (x)) = π2 ◦ f1 ◦ π1 (π2 (x)) = π2 ◦ f1 (0) = 0, for all x ∈ g. Hence β = 0.

Other cases can be checked in a similar way.

Now put ΓLie(g)ij = πiΓ
Lie(g)πj , i, j = 1, 2. We claim that the following

isomorphisms of vector spaces hold:

ΓLie(g)11
∼= ΓLie(g1), ΓLie(g)22

∼= ΓLie(g2), ΓLie(g)12
∼= C2, ΓLie(g)21

∼= C1.

For ϕ ∈ ΓLie(g)11, we have ϕ (g2) = 0, so ϕ|g1
∈ ΓLie(g1). Now, considering

ΓLie(g1) as a subalgebra of ΓLie(g) such that for any ϕ0 ∈ ΓLie(g1), ϕ0 vanishes

on g2, that is, ϕ0 (x1) = ϕ0 (x2), ϕ0 (x2) = 0, for all x1 ∈ g1 and x2 ∈ g2. Then

ϕ0 ∈ ΓLie(g) and ϕ0 ∈ ΓLie(g)11. Therefore, ΓLie(g)11
∼= ΓLie(g1) by means of the

isomorphism σ : ΓLie(g)11 −→ ΓLie(g1), σ (ϕ) = ϕ|g1
, for all ϕ ∈ ΓLie(g)11.

The isomorphism ΓLie(g)22
∼= ΓLie(g2) can be proved in an analogous way.
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We now prove that ΓLie(g)12
∼= C2. Indeed, for any ϕ ∈ ΓLie(g)12, there exists

a ϕ0 ∈ ΓLie(g) such that ϕ = π1 ◦ ϕ0 ◦ π2. For xk = (x1k, x
2
k) ∈ g, where xik ∈ gi,

i = 1, 2, k = 1, 2, we have

ϕ ([x1, x2]lie) = π1 ◦ ϕ0 ◦ π2 ([x1, x2]lie) = π1 ◦ ϕ0 ◦ π2
(
[(x11, x

2
1), (x12, x

2
2)]lie

)
= π1ϕ0

(
[x21, x

2
2]lie

)
= π1

(
[ϕ0

(
x21
)
, x22]lie

)
= 0,

hence ϕ(γLie2 (g)) = 0. On the other hand, [ϕ (x1) , x2]lie = ϕ ([x1, x2]lie) = 0, so,

ϕ(g) ⊆ ZLie(g) and ϕ(γLie2 (g)) = 0.

It follows that ϕ|g2
(g2) ⊆ ZLie(g1) and ϕ|g2

(γLie2 (g2)) = 0, hence ϕ|g2
∈ C2.

Conversely, for ϕ ∈ C2, expanding ϕ on g by ϕ (g1) = 0, we have π1 ◦ϕ◦π2 =

ϕ, and so ϕ ∈ ΓLie(g)12. Hence ΓLie(g)12
∼= C2, by means of the isomorphism

τ : ΓLie(g)12 −→ C2, τ (ϕ) = ϕ|g2
for all ϕ ∈ ΓLie(g)12.

Similarly, it can be proved that ΓLie(g)21
∼=C1, which completes the proof. �

5. IDLie-derivations

Definition 5.1. A Lie-derivation d : g → g is said to be an ID-Lie-derivation

if d(g) ⊆ γLie2 (g). The set of all ID-Lie-derivations of g is denoted by IDLie(g).

An ID-Lie-derivation d : g→ g is said to be an ID∗-Lie-derivation if d vanishes

on the Lie-central elements of g. The set of all ID∗-Lie-derivations of g is denoted

by IDLie
∗ (g).

It is obvious that IDLie(g) and IDLie
∗ (g) are subalgebras of DerLie(g) and

DerLiec (g) ⊆ IDLie
∗ (g) ⊆ IDLie(g), (4)

where DerLiec (g) is the subspace of DerLie(g) given by {d ∈ DerLie(g) | d(x) ∈
[x, g]lie,∀x ∈ g}. These kinds of derivations are called almost inner Lie-derivations

of g.

Example 5.2. Let g be the three-dimensional Leibniz algebra with basis

{a1, a2, a3} and bracket operation given by [a2, a2] = [a3, a3] = a1 and zero else-

where (algebra 2 (c) in [9]). The right multiplication Lie-derivations Rx, x ∈ g,

are examples of almost inner Lie-derivations.

Definition 5.3. An almost inner Lie-derivation d is said to be a central almost

inner Lie-derivation if there exists an x ∈ Zl(g) such that (d−Rx)(g) ⊆ ZLie(g).

We denote the K-vector space of all central almost inner Lie-derivations by

DerLiecz (g).
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Theorem 5.4. Let g and q be two Lie-isoclinic Leibniz algebras. Then

IDLie
∗ (g) ∼= IDLie

∗ (q).

Proof. Let (η, ξ) be the Lie-isoclinism between g and q, and let α ∈ IDLie
∗ (g).

Consider the map ζα : q → q defined by ζα(y) := ξ(α(x)), where y + ZLie(q) =

η(x + ZLie(g)). Clearly, ζα is a well-defined linear map, since α and ξ are linear

maps, and if y ∈ ZLie(q), then x ∈ ZLie(g), and thus ζα(y) = ξ(α(x)) = ζ(0) = 0.

To show that ζα is a Lie-derivation, let y1, y2 ∈ q and x1, x2 ∈ g such that

yi + ZLie(q) = η(xi + ZLie(g)), i = 1, 2. Then

ζα([y1, y2]lie) = ξ(α([x1, x2]lie))

= ξ([α(x1), x2]lie) + ξ([x1, α(x2)]lie) by [3,Prop. 3.8]

= [ξ(α(x1)), y2]lie + [y1, ξ(α(x2))]lie

= [ζα(y1), y2]lie + [y1, ζα(y2)]lie.

Moreover, since α(g) ⊆ γLie2 (g) and ξ is an isomorphism, it follows that ζα(q) ⊆
γLie2 (q). Therefore ζα ∈ IDLie

∗ (q). Now consider the map ζ : IDLie
∗ (g) → IDLie

∗ (q)

defined by ζ(α) = ζα. We claim that ξ is a Lie-homomorphism. Indeed, for

α1, α2 ∈ IDLie
∗ (g), we have for all y ∈ q and x ∈ g such that y + ZLie(q) =

η(x+ ZLie(g)),

ζ([α1, α2])(y) = ζ[α1,α2](y) = ξ([α1, α2](x)) = ξ(α1(α2(x))− α2(α1(x)))

= ξ(α1(α2(x)))− ξ(α2(α1(x)))

= ζα1
(ξ(α2(x))− ζα2

(ξ(α1(x)) by [3,Prop. 3.8]

= ζα1
(ζα2

(y))− ζα2
(ζα1

(y)) = [ζα1
, ζα2

](y) = [ζ(α1), ζ(α2)](y).

Hence ζ([α1, α2]) = [ζ(α1), ζ(α2)]. Conversely, let β ∈ IDLie
∗ (q). By using the

inverse Lie-isoclinism (η−1, ξ−1), we similarly construct a homomorphism ζ ′ :

IDLie
∗ (q) → IDLie

∗ (g) defined by ζ ′(β) = ζ ′β , where ζ ′β(x) = ξ−1(β(y)) with y +

ZLie(q) = η(x+ ZLie(g)). It is clear that (ζ ′ ◦ ζ)(α)(x) = ζ ′(ζ(α))(x) = ζ ′ζ(α)(x) =

ξ−1(ζ(α)(y)) = ξ−1(ζα(y)) = ξ−1(ξ(α(x))) = α(x). So ζ ′ ◦ ζ = IdIDLie
∗ (g). Similarly,

one shows that ζ ◦ ζ ′ = IdIDLie
∗ (q). Therefore IDLie

∗ (g) ∼= IDLie
∗ (q). �

Corollary 5.5. Let g and q be two Lie-isoclinic Leibniz algebras. Then

DerLiec (g) ∼= DerLiec (q).

Proof. Let (η, ξ) be the Lie-isoclinism between g and q, and let α∈DerLiec (g).

Consider again the map ζα : q → q defined by ζα(y) := ξ(α(x)), where y +

ZLie(q) = η(x+ ZLie(g)), given in the proof of Theorem 5.4. Since α(x) ∈ [x, g]lie



234 G. R. Biyogmam, J. M. Casas and N. Pacheco Rego

and ξ is an isomorphism, it is clear that ζα(y) ∈ [y, q]lie for all y ∈ q. So

ζα ∈ DerLiec (q). So the restriction ζ|DerLiec (g) : DerLiec (g)→ DerLiec (q) of the map ζ in

the proof of Theorem 5.4 to DerLiec (g) is a homomorphism. Similarly, by using the

inverse Lie-isoclinism (η−1, ξ−1), one obtains a homomorphism by taking the re-

striction ζ ′|DerLiec (q)
: DerLiec (q)→ DerLiec (g) of the map ζ ′ in the proof of Theorem 5.4

to DerLiec (q). It is clear that ζ ◦ ζ ′|DerLiec (q)
= IdDerLiec (q) and ζ ′ ◦ ζ|DerLiec (g) = IdDerLiec (g).

Therefore DerLiec (g) ∼= DerLiec (q). �

For any d ∈ DerLiez (g), the map ψd : g
γLie
2 (g)

→ ZLie(g) given by ψd(g+γLie2 (g)) =

d(g) is a linear map. It is easy to show that the linear map ψ : DerLiez (g) →
T
(

g
γLie
2 (g)

, ZLie(g)
)

, ψ(d) = ψd, is bijective. Therefore, for any finite dimensional

Leibniz algebra g, dim
(
DerLiez (g)

)
= dim

(
T
(

g
γLie
2 (g)

, ZLie(g)
))

.

Corollary 5.6. Let g be a finite dimensional Leibniz algebra such that

[g, g] = γLie2 (g) and ZLie(g) ⊆ Zr(g). Then IDLie
∗ (g) = DerLiez (g) if and only if

γLie2 (g) = ZLie(g).

Proof. Assume that γLie2 (g) = ZLie(g). It is clear that for all d ∈ DerLiez (g),

one has that d(g) ⊆ ZLie(g) if and only if d(g) ⊆ γLie2 (g) and d(ZLie(g)) =

d(γLie2 (g)) = 0. Therefore IDLie
∗ (g) = DerLiez (g).

Conversely, assume that IDLie
∗ (g) = DerLiez (g). Then, since [g, g] = γLie2 (g) and

ZLie(g) ⊆ Zr(g), it follows that the map Rx : g → g, Rx(y) = [y, x], is a Lie-

derivation. Moreover, it is easy to check that Rx ∈ IDLie
∗ (g) = DerLiez (g), hence

Rx(y) ∈ ZLie(g), for all y ∈ g. Therefore ZLie
2 (g) = g, and thus g is Lie-nilpotent

of class 2 by Theorem 2.4. Now, by [5, Corollary 4.1], there is a Lie-stem Leibniz

algebra q Lie-isoclinic to g. Denote this Lie-isoclinism by (η, ξ). Since g is a Lie-

nilpotent Leibniz algebra of class 2, so is q, due to Lemma 3.7. This implies

that [g, g]Lie
ξ∼= [q, q]Lie = ZLie(q), and g

ZLie(g)

η∼= q
ZLie(q)

∼= q
[q,q]Lie

. It follows from

Theorem 5.4, the first implication and Lemma 3.5 that

dim(DerLiez (g)) = dim(IDLie
∗ (g)) = dim(IDLie

∗ (q)) = dim(DerLiez (q))

= dim

(
T

(
q

[q, q]Lie
, ZLie(q)

))
= dim

(
T

(
q

ZLie(q)
, [q, q]Lie

))
= dim

(
T

(
g

ZLie(g)
, [g, g]Lie

))
= dim

(
Z(DerLiez (g))

)
.

The latter equality is due to Theorem 3.10, since g is Lie-nilpotent of class 2.

Therefore DerLiez (g) is abelian. We now conclude by Corollary 3.11 that γLie2 (g) =

ZLie(g). �
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Remark 5.7. Let us observe that the requirements [g, g]=γLie2 (g) and ZLie(g)⊆
Zr(g) in Corollary 5.6 are not needed in the absolute case, but in our relative set-

ting they are absolutely necessary as the following counterexample shows. Let g

be the four-dimensional complex Leibniz algebra with basis {a1, a2, a3, a4} and

bracket operation given by [a1, a2] = −[a2, a1] = a4; [a3, a3] = a4 and zero else-

where (class R21 in [1, Theorem 3.2]). It is easy to check that [g, g] = 〈{a4}〉 =

γLie2 (g), ZLie(g) = 〈{a1, a2, a4}〉 and Zr(g) = 〈{a4}〉.
Consider the Lie-derivation Ra1 , which belongs to DerLiez (g). However, Ra1 /∈

IDLie
∗ (g), since Ra1 does not vanish on ZLie(g).

Example 5.8. The three-dimensional complex Leibniz algebra with basis

{a1, a2, a3} and bracket operation given by [a2, a2] = γa1, γ ∈ C; [a3, a2] =

[a3, a3] = a1 and zero elsewhere (class 2 (a) in [9]) satisfies the requirements

of Corollary 5.6, since [g, g] = γLie2 (g) = ZLie(g) = Zr(g) = 〈{a1}〉.

Theorem 5.9. Let g be a Leibniz algebra such that γLie2 (g) is finite dimen-

sional and g
ZLie(g)

is generated by p elements. Then

dim(IDLie
∗ (g)) ≤ p · dim(γLie2 (g)).

Proof. Consider the map α : IDLie
∗ (g)→ T

(
g

ZLie(g)
, γLie2 (g)

)
defined by d 7→

d∗ such that d∗(x+ZLie(g)) = d(x). Then α is a well-defined injective linear map.

It follows that dim(IDLie
∗ (g)) ≤ dim

(
T
(

g
ZLie(g)

, γLie2 (g)
))

= p · dim(γLie2 (g)) �

Example 5.10. Now we present two examples illustrating the inequality in

Theorem 5.9.

(a) Let g be the three-dimensional Leibniz algebra with basis {a1, a2, a3} and

bracket operation given by [a2, a3] = −[a3, a2] = a2, [a3, a3] = a1 and zero

elsewhere (class 2 (f) in [9]).

It is an easy task to check that g
ZLie(g)

= 〈{a3}〉, hence the number of

generators is p = 1. Moreover, γLie2 (g) = 〈{a1}〉. Also, it can be checked that

an element d∈ IDLie
∗ (g) is represented by a matrix of the form 0 0 a13

0 0 0

0 0 0

 .

Hence dim(IDLie
∗ (g)) = 1 ≤ 1 · 1.
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(b) Let g be the four-dimensional Leibniz algebra with basis {a1, a2, a3, a4} and

bracket operation given by [a1, a4] = a1, [a2, a4] = a2 and zero elsewhere

(class R2 in [7, Theorem 2.7]).

It is an easy task to check that g
ZLie(g)

= 〈{a1, a2, a4}〉, hence the number

of generators is p = 3. Moreover, γLie2 (g) = 〈{a1, a2}〉. Also, it can be checked

that an element d ∈ IDLie
∗ (g) is represented by a matrix of the form

a11 a12 0 0

a21 a22 0 0

0 0 0 0

0 0 0 0

 .

Hence dim(IDLie
∗ (g)) = 4 ≤ 3 · 2.

Corollary 5.11. Let g be a Leibniz algebra such that Zr(g) = ZLie(g),

[g, g] = γLie2 (g) is finite dimensional and g
ZLie(g)

is generated by p elements. Then

dim

(
g

ZLie(g)

)
≤ p · dim(γLie2 (g)).

Proof. Under these hypotheses, we have from the proof of Corollary 5.6 that

Rx ∈ IDLie
∗ (g) for all x ∈ g. Now, consider the K-linear map β : g

ZLie(g)
→ IDLie

∗ (g)

defined by x+ ZLie(g) 7→ Rx, which is an injective well-defined linear map, since

Ker(β) = Zr(g)
ZLie(g)

= 0. Hence dim
(

g
ZLie(g)

)
≤ dim

(
IDLie
∗ (g)

)
. Now Theorem 5.9

completes the proof. �

Example 5.12. The three-dimensional non-Lie Leibniz algebra with basis

{a1, a2, a3} and bracket operation [a3, a3] = a1 and zero elsewhere (class 2 (b)

in [9]) satisfies the requirements of Corollary 5.11.

Definition 5.13. A Leibniz algebra g of dimension n is said to be Lie-filiform

(or 1-Lie-filiform) if dim(γLiei (g)) = n− i, 2 ≤ i ≤ n.

Lie-filiform Leibniz algebras are Lie-nilpotent Leibniz algebras of class n− 1.

Corollary 5.14. Let g be an n-dimensional Leibniz algebra such that Zr(g)

= ZLie(g) ⊆ Zl(g) and it attains the upper bound of Corollary 5.11. If g is

Lie-filiform, then n = 3.

Proof. If g is Lie-filiform, then dim(γLie2 (g)) = n− 2, n ≥ 2. Then we have

p = dim
(

g
ZLie(g)

)
= p · dim(γLie2 (g)) = p(n− 2), which implies that n = 3. �
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Remark 5.15. Example 5.12 provides a Lie-filiform Leibniz algebra which

illustrates Corollary 5.14.

Proposition 5.16. Let g be a Leibniz algebra. Then the following state-

ments hold:

(a) Let d ∈ DerLiec (g). Then d(g) ⊆ γLie2 (g), d(ZLie(g)) = 0 and d(n) ⊆ n for every

two-sided ideal n of g.

(b) For d ∈ DerLiecz (g), there exists an x ∈ Zl(g) such that d|γLie
2 (g) = Rx|γLie

2 (g).

(c) If g is 2-step Lie-nilpotent, then DerLiecz (g) = DerLiec (g).

(d) If ZLie(g) = 0, then DerLiecz (g) ⊆ R(g) and R(Zl(g)) ⊆ DerLiecz (g).

(e) If g is Lie-nilpotent, then DerLiec (g) is Lie-nilpotent and all d ∈ DerLiec (g) are

nilpotent.

(f) DerLiec (g⊕ g′) = DerLiec (g)⊕ DerLiec (g′), for any Leibniz algebras g and g′.

Proof. (a) For any x ∈ g, we have d(x) ∈ [x, g]Lie ⊆ [g, g]Lie; if x ∈ ZLie(g),

then d(x) = [x, y]lie = 0, for all y ∈ g; d(n) ⊆ [n, g]Lie ⊆ n.

(b) Let d ∈ DerLiecz (g), then there exists x ∈ Zl(g) such that (d − Rx)(g) ⊆
ZLie(g). Since d−Rx is a Lie-derivation, we have

(d−Rx)([y, z]lie) = [(d−Rx)(y), z]lie + [y, (d−Rx)(z)]lie = 0,

and thus d([y, z]lie) = Rx([y, z]lie), for all y, z ∈ g. Hence d|γLie
2 (g) = Rx|γLie

2 (g).

(c) Notice that if g is 2-step Lie-nilpotent, then γLie2 (g) ⊆ ZLie(g). So for all

d ∈ DerLiec (g), any x ∈ Zl(g) and y ∈ g, we have d(y) ∈ [y, g]Lie ⊆ γLie2 (g) ⊆ ZLie(g)

and Rx(y) = [y, x] = [y, x]lie ∈ γLie2 (g) ⊆ ZLie(g). Therefore (d−Rx)(g) ⊆ ZLie(g),

and thus d ∈ DerLiecz (g).

(d) Assume that ZLie(g) = 0. Then for all d ∈ DerLiecz (g), there exists an

x ∈ Zl(g) such that (d − Rx)(g) = 0, i.e., d = Rx ∈ R(g). So DerLiecz (g) ⊆ R(g).

The second inclusion can be easily checked.

(e) If g is Lie-nilpotent of class c, then γLiec+1(g) = 0. So for any d ∈ DerLiec (g),

d(x) ∈ [x, g]Lie ⊆ γLie2 (g). One inductively proves that dc(x) ∈ γLiec+1(g), dc(x) =

d(dc−1(x)) ∈ [dc−1(x), g]Lie ⊆ γLiec+1(g) = 0. So d is nilpotent.

Also, a routine inductive argument shows that γLiec+1(DerLiec (g))(g) ⊆
γLiec+1(g) = 0. So γLiec+1(DerLiec (g)) = 0, and thus DerLiec (g) is Lie-nilpotent.

(f) For any d ∈ DerLiec (g ⊕ g′), it is clear that d|g ∈ DerLiec (g) and d|g′ ∈
DerLiec (g′). Conversely, for d ∈ DerLiec (g) and d′ ∈ DerLiec (g′), one easily shows

that the mapping d′′ : g ⊕ g′ → g ⊕ g′ defined by d′′(x, x′) := (d(x), d′(x′)) is

a Lie-derivation such that for (x, x′) ∈ g⊕ g′, we have d′′(x, x′) = (d(x), d′(x′)) ∈
([x, g]Lie, [x

′, g′]Lie) = [(x, x′), g⊕ g′]Lie by definition of the bracket of g⊕ g′. �
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