
The Corinthian The Corinthian 

Volume 13 Article 5 

2012 

Transmetallation of a Lithium Porphyrin with Iron(II) Transmetallation of a Lithium Porphyrin with Iron(II) 

Kidus Debesai 
Georgia College & State University 

Follow this and additional works at: https://kb.gcsu.edu/thecorinthian 

 Part of the Inorganic Chemistry Commons 

Recommended Citation Recommended Citation 
Debesai, Kidus (2012) "Transmetallation of a Lithium Porphyrin with Iron(II)," The Corinthian: Vol. 13 , 
Article 5. 
Available at: https://kb.gcsu.edu/thecorinthian/vol13/iss1/5 

This Article is brought to you for free and open access by the Undergraduate Research at Knowledge Box. It has 
been accepted for inclusion in The Corinthian by an authorized editor of Knowledge Box. 

https://kb.gcsu.edu/thecorinthian
https://kb.gcsu.edu/thecorinthian/vol13
https://kb.gcsu.edu/thecorinthian/vol13/iss1/5
https://kb.gcsu.edu/thecorinthian?utm_source=kb.gcsu.edu%2Fthecorinthian%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/137?utm_source=kb.gcsu.edu%2Fthecorinthian%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://kb.gcsu.edu/thecorinthian/vol13/iss1/5?utm_source=kb.gcsu.edu%2Fthecorinthian%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages


60

The Corinthian: The Journal of Studnt Research at Georgia College

Transmetallation of a Lithium Porphyrin with Iron(II)
Kidus Debesai     Rosalie A. Richards, PhD
      Faculty Sponsor
         
 
Abstract:
Synthesis and characterization of the iron(III) derivative of the 
2,3,7,8,12,13,17,18-octabromo-meso-tetrakis(N-methylpyridium-4-yl)porphyrin 
was accomplished via metal metathesis of the lithium porphyrin and iron(II) ion. 
Preliminary molecular orbital analysis of the iron(II) and iron(III) derivatives 
demonstrate that the iron(III) porphyrin exists at a lower energy state.

INTRODUCTION
Porphyrins have been considered among the most important molecules and 
have been studied extensively because of their major role in oxygen transport 
(heme), photosynthesis in plants (chlorophyll), and their oxidation and reduction 
capabilities in biological systems.1 Figure 1 below represents the simplest 
structure of a porphyrin, porphine. Porphyrins are cyclic organic compounds 
with four pyrrole rings. The structure and function of porphyrins can be 
changed by replacing the beta and gamma carbons with various substituents and 
replacing the core protons with metal ions.
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Figure 1. Structure of the simplest porphyrin, porphine

Since iron porphyrin plays a central role in biological systems, the study of 
iron porphyrin has been a major component of porphyrin investigations.2 Aside 
from their function as heme, iron porphyrins have been implicated in several 
medicinal applications such as the photodynamic therapy (PDT) of cancers.3 
Scheme 1 shows the first process of photosensitization.
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Scheme 1: PDT sensitization (vibrational levels omitted)
In the presence of light, some porphyrins excite ground state triplet state (3O2) 
oxygen to the excited state, singlet state (1O2). Singlet state oxygen is highly 
toxic and has the potential to destroy the cancer cells or tumors by reacting 
irreversibly with cellular bodies. This approach shows much promise in the non-
invasive treatment of cancer. However, for PDT to be effective, photosensitizers 
must absorb light at wavelengths that can penetrate target tissue (> 630 nm) and 
efficiently transfer energy to the dioxygen agent.3 

MOTIVATION
We recently reported on the synthesis of a novel gadolinium(III) porphyrin for 
application as an contrast agent for magnetic resonance imaging (MRI) and as a 
PDT agent.4 We have extended our studies to the iron(III) porphyrin derivative 
since iron porphyrin complexes could provide the optimal conditions required as 
a photosensitizer including (a) low cytotoxicity; (b) selectivity for tumor cells; 
(c) light absorption at long wavelengths; (d) ability to photosensitize triplet 
oxygen to the singlet species; (d) robustness in the presence of the reactive 
singlet oxygen species; (e) oxygen aqueous solubility in injectable fluids; and (f) 
ease of synthesis.5

MATERIALS AND METHODS
meso-tetrakis(N-methylpyridium-4-yl)porphyrin 4-toluenesulphonate  
(H2TMPyPTos) was purchased from Frontier Scientific, Inc. Bromine (Br2), 
dimethylformamide [(CH3)2NCHO], copper(II) acetate (Cu(OAc)2.2H2O), 
iron(II) chloride (FeCl2), 2-propanol, methanol, ammonium hexafluorophosphate 
(NH4PF6), diethyl ether, lithium hexafluorophosphate (LiPF6), sodium hydroxide 
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(NaOH), n-butylammonium chloride (nBu4Cl), and acetone [(CH3)2CO)]. 
All other reagents were purchased from Sigma Aldrich and used without 
further purification.  Absorption spectroscopy was performed on a Shimadzu 
UV-2401PC. Molecular orbital diagram modeling was conducted using the 
Amsterdam Density Functional Software program (ADF 2010) by Scientific 
Computing and Modeling. 

EXPERIMENTAL
Synthesis of H2TMPyPBr8(PF6)4: The starting material, H2TMPyP4+, was 
characterized by absorbance spectroscopy and showed an absorbance spectrum 
that was diagnostic of porphyrin (Figure 1). The octabrominated freebase 
porphyrin, H2TMPyPBr8

4+, was prepared as the PF6- salt via bromination of the 
copper derivative using a procedure reported by Richards et al.6

 

Figure 1. Absorption spectrum of H2TMPyP4+ at pH 7 

First, CuTMPyP4+ was synthesized by mixing 0.252 g H2TMPyP4+ and 0.251 
g Cu(OAc)2.2H2O in a 27 mL methanol:water solution (25:2.5 v/v). The rust-
brown mixture was heated to ~50oC for 1 hr and the crude copper(II) porphyrin 
derivative was isolated by removing the solvent via simple distillation (Scheme 
2). Then, the solid was washed with small aliquots of 2-propanol (total 7.5 mL) 
and the brown solid was collected.

423 nm 
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Scheme 2: Insertion of Cu2+ ions

The absorption spectrum was consistent with formation of the Cu(II) complex 
(Figure 2).

Figure 2. UV-Vis spectrum of CuTMPyP4+ in H2O

A bromine solution (0.5 mL in a 10 ml DMF) was added drop-wise for 30 
minutes at room temperature to 10 mL DMF containing 0.159 g of the copper 
porphyrin. The solution turned green upon addition of bromine and was stirred 
for 12 h to ensure completion of reaction. The reaction was quenched by 
addition of 30  mL water. A green precipitate was collected  by suction filtration, 
washed with water (3 aliquots of 5 mL each) and air-dried (Scheme 3).

  426 nm 
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Scheme 3:  Bromination of β-pyrrole carbons

The absorbance spectrum shifted from 425 nm to 456 nm, indicating that 
octabromination had occurred (Figure 3).

Figure 3. Absorption spectrum of CuTMPyPBr84+ at pH 7

The free-base octabrominated porphyrin, H2TMPyPBr84+, was synthesized by 
demetallating the Cu(II) complex. Exactly 0.221 g CuTMPyPBr84+ was added 
slowly to 7.5 mL of concentrated sulfuric acid cooled to 10oC. The solution 
turned orangish-gold immediately. The solution was stirred for 2 hr and poured 
over ~100 g of ice. After all the ice had melted, excess NH4PF6 (~3.5 g) was 
added and green tinsel-like crystals precipitated. The solid was washed with 20 
mL of diethylether/propanol (1:1 v/v) solution and dried overnight (Scheme 4).

 

456 nm 
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Scheme 4: Demetallation of Cu2+ ions
The Soret band shifted from 456 nm to 497 nm (Figure 5). 

Figure 4. Absorption spectrum of H3TMPyPBr8
5+ at pH 7

Synthesis of LiTMPyPBr8
3+: To prepare the lithium porphyrin derivative, the 

free-base H3TMPyPBr8
5+ was deprotonated in 0.1M NaOH and excess LiPF6 

was added. The solution turned pink and eventually dark brown precipitate 
appeared. The precipitate was collected by suction filtration. To increase the 
water-solubility of the lithium complex, the solid was dissolved in acetone (5 
mL) and excess nBu4Cl was added to the solution. A red precipitate formed 
immediately and was collected by suction filtration (Scheme 5).
 

  497 nm 
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Scheme 5: Synthesis of LiTMPyPBr8
3+

Absorption spectroscopy revealed a Soret band at 532 nm, consistent with 
previous findings. 

 

Figure 5. Absorption spectrum of LiTMPyPBr8
3+ in 0.1M NaOH 

Approximately 1 mg of the chloride salt of LiTMPyPBr8
3+ was dissolved in 

water at pH 7 solution and excess FeCl2 was added. The solution changed color 
from pink to rust-red. The absorption spectrum showed two distinct peaks in the 
Soret region (Figure 6).

 

  532 nm 



67

Transmetallation of a Lithium Porphyrin with Iron(II)

Figure 6. Absorption spectrum of reaction between LiTMPyPBr8
3+ and 

Fe(III) ion (pH 7)

RESULTS AND DISCUSSION
The following table shows the porphyrin derivatives synthesized and their 
spectral data.

Table 1. Absorbance Data for Porphyrin Derivatives
Porphyrin Derivative λmax (nm) Solvent
H2TMPyP4+  423  pH 7
CuTMPyP4+  426, 597  pH 7
CuTMPyPBr8

4+  456, 597  pH 7
H3TMPyPBr8

5+  497, 640, 730 pH 7
LiTMPyPBr8

3+  537, 730  1 M NaOH
FeTMPyPBr8

5+  455, 470  pH 7

Absorbance data confirmed were consistent with literature for the synthesis 
of the freebase porphyrin and revealed bathochromic shifts of the Soret band 
upon bromination by about 9 nm per bromine atom.6.ibid Synthesis of the lithium 
porphyrin complex was accomplished via the deprotonated porphyrin species, 
TMPyPBr8

2+, in aqueous base.

Subsequent addition of the iron(II)  ion in aqueous solution resulted in two Soret 
peaks at 455 nm and 480 nm. While the peak at 455 nm is likely due to 

    455 nm  

480 nm  

m  

      480 nm  

480 nm  

m  
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the axially-ligated bis-aquo Fe(III) porphyrin derivative, the absorbance at 480 
nm could be explained by the formation of the mono-hydroxo/aquo Fe(III) 
porphyrin complex  in an equilibrium mixture at pH 7. This is supported by 
other experiments in our labs.7 When the H3TMPyPBr8

5+ is mixed with Fe(II) 
acetate under nitrogen, a black solid formed. Dry acetone solutions of the 
product revealed a single Soret band at 470 nm. On exposure of the solution 
to air, the color immediately changed from black to green with a single Soret 
band at 455 nm, suggesting that oxidation of the metal ion had occurred. In 
addition, analysis of pH-dependent cyclic voltammetry of the iron(III) complex, 
FeTMPyPBr8

5+, gave a pKa of 6.5 for the axially-ligated aquo-species (Equation 
1).

(H2O)2FeTMPyPBr85+    =   (OH)(H2O)FeTMPyPBr8
5+   +   H+      (1)

Therefore, at pH 7, mono-hydroxo/aquo Fe(III) porphyrin complex would be 
the predominant solution species. Cyclic voltammetry was confounded above 
pH 8, presumably due to formation of demetallation of the iron ion from 
FeTMPyPBr8

5+ and formation of  Fe(OH)4- species.
Density Function Analysis: ADF 2010 was used to construct molecular orbital 
diagrams for both Fe(II) and Fe(III) porphyrins as illustrated in Figure 7. 
Preliminary results of energetic studies of Fe(II) and Fe(III) porphyrin via ADF 
2010 predicted that Fe(III) porphyrin complex is more stable than the Fe(II) 
derivative.

Figure 7. Molecular orbital diagrams for Fe(II) and Fe(III) derivatives of 
H3TMPyPBr8

5+

Table 2 shows that the triplet state of the Fe(II)P and the quadruplet state of the 
Fe(III)P are the most stable forms of the metalloporphyrin complexes. These 

 

Fe(II)P  Fe(III)P 
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results are preliminary and further studies are currently underway.

Table 2. Energetics of Fe(II) and Fe(III) porphyrins
Porphyrin Moiety Electronic State Energy (kcal/mol)
Fe(II)P    singlet         do not converge 
    triplet  -12415.4953
    quintuplet -12406.1834 
Fe(III)P    doublet         do not converge 
    quadruplet -12052.5869 
    Sextuplet -12074.3291 

CONCLUSIONS AND OUTLOOK
The metal metathesis reaction between the lithium porphyrin and iron(II) 
allowed for the synthesis of the Fe(III) species. Further characterization 
is required via NMR, elemental analysis, and Mossbauer. Scale up of the 
LiTMPyPBr8

3+ provides opportunities to prepare not only the Fe(III) porphyrin 
complex but other transition metal ions under ambient conditions. Preliminary 
findings in this work provides the foundation for synthesizing a library of 
transition metal and lanthanide porphyrin derivatives. 
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