Document Type


Publication Date


Publication Title



Tropical high-altitude lakes are vital freshwater ecosystems for the functioning and dynamics of tropical high-altitude wetlands called páramos, found at over 3300 m above sea level. They play a major role in the hydrogeological cycle and provide important hydrological services such as water storage, and yet they are understudied. Describing the patterns and processes of community composition in these lakes is required to better understand the consequences of their degradation by human activities. In this study we tested the geographical and environmental components of distance–decay relationships in the phytoplankton structure across 24 tropical high-altitude lakes from Southern Ecuador. Phytoplankton composition at the phyla level showed high among-lake variation in the tropical high-altitude lakes from Tres Lagunas. We found no links, however, between the geographic distance and phytoplankton composition. On the contrary, we observed some environmentally related patterns of community structure like redox potential, altitude, water temperature, and total phosphorus. The absence of support for the distance–decay relationship observed here can result from a conjunction of local niche-based effects and dispersal limitations. Phytoplankton community composition in the Tres Lagunas system or any other ecosystem may be jointly regulated by niche-based and neutral forces that still need to be explored. Despite not proving a mechanistic explanation for the observed patterns of community structure, we hope our findings provide understanding of these vulnerable and vital ecosystems. More studies in tropical high-altitude lakes are urgently required.


Biological and Environmental Sciences

Volume Number


Issue Number


First Page