Revisiting the Energetics Hypothesis: Comparing the Spatial and Temproal Movement Patterns between Active Foraging Rat snakes (Pantherophis alleghaneinsis) and Ambush Foraging Rattlesnakes (Crotalus horridus)

Document Type

Poster

Session Format

Oral presentation only (in-person)

Location

Magnolia Ballroom

Publication Date

3-29-2023

Start Date

27-3-2024 10:00 AM

End Date

27-3-2024 10:50 AM

Abstract

Historically, predators have been classified into two categories based upon how they search for and acquire prey. Active foragers move through the environment in search of prey, while ambush foragers “sit-and-wait” in selected positions for prey to pass. This difference in energetic demands is expected to correlate with disparities in the time species allocate to various behaviors. According to this energetics hypothesis, ambush foragers should exhibit reduced movement and space use relative to co-occurring active foragers. Snakes represent traditionally overlooked model organisms for exploring these associations, particularly the interplay between movement, foraging mode, and thermal preferences. Radio telemetry is the primary tool for measuring snake movement, however, coarse measures of activity hinder examination of movement patterns at finer temporal scales. This study capitalizes on recently validated procedures integrating radio telemetry and accelerometry for continuous monitoring of the spatial and temporal dimensions of movement behavior in snakes. We will carry out an improved test of the energetics hypothesis by exploring these associations in ambush-foraging Timber Rattlesnakes (Crotalus horridus) and active-foraging Rat Snakes (Pantherophis alleghaniensis). This project will provide a blue-print for future hypothesis-driven studies on movement behavior in small and secretive species using emerging animal-borne datalogging technologies.

This document is currently not available here.

Share

COinS